Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Présurseurs des organes sensoriels“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Présurseurs des organes sensoriels" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Présurseurs des organes sensoriels"
Ghysen, A., und C. Dambly-Chaudière. „Le développement des organes sensoriels chez la drosophile“. médecine/sciences 11, Nr. 2 (1995): 178. http://dx.doi.org/10.4267/10608/2184.
Der volle Inhalt der QuelleMessaddeq, N., M. Fabre und M. Kremer. „Étude au microscope électronique à balayage des organes sensoriels deCulicoides nubeculosus(Diptère : Cératopogonidé)“. Annales de Parasitologie Humaine et Comparée 64, Nr. 3 (1989): 224–37. http://dx.doi.org/10.1051/parasite/1989643224.
Der volle Inhalt der QuelleBÉGOUT-ANRAS, M. L., und J. P. LAGARDÈRE. „Domestication et comportement chez les poissons téléostéens“. INRAE Productions Animales 17, Nr. 3 (29.07.2004): 211–15. http://dx.doi.org/10.20870/productions-animales.2004.17.3.3594.
Der volle Inhalt der QuelleD'Amico, F., B. Geoffroy, Dominique Cuisance und J. P. Bossy. „Acquisition de nouvelles données sur l'équipement sensoriel des glossines (Diptera, Glossinidae)“. Revue d’élevage et de médecine vétérinaire des pays tropicaux 44, Nr. 1 (01.01.1991): 75–79. http://dx.doi.org/10.19182/remvt.9220.
Der volle Inhalt der QuelleHenry, Jean-Pierre. „Peut-on comprendre les mécanismes de la perception ?“ médecine/sciences 38, Nr. 2 (Februar 2022): 191–97. http://dx.doi.org/10.1051/medsci/2022004.
Der volle Inhalt der QuelleGeoffroy, B., F. Bialota, J. P. Bossy, M. Ravallec, F. D'Amico und Dominique Cuisance. „Les chimiorécepteurs de l'aile chez Glossina pallidipes (Diptera : Glossinidae) et Stomoxys nigra (Diptera : Muscidae)“. Revue d’élevage et de médecine vétérinaire des pays tropicaux 49, Nr. 2 (01.02.1996): 141–48. http://dx.doi.org/10.19182/remvt.9532.
Der volle Inhalt der QuelleGualandi, Alberto. „The dance of the mind. Physics and metaphysics in Gilles Deleuze and David Bohm“. Veritas (Porto Alegre) 62, Nr. 2 (26.10.2017): 279. http://dx.doi.org/10.15448/1984-6746.2017.2.28508.
Der volle Inhalt der QuelleJones, John, Vivian Blok und Geert Smant. „SXP/RAL-2 proteins of the potato cyst nematode Globodera rostochiensis: secreted proteins of the hypodermis and amphids“. Nematology 2, Nr. 8 (2000): 887–93. http://dx.doi.org/10.1163/156854100750112833.
Der volle Inhalt der QuelleBoussarie, Didier. „L’univers sensoriel des tortues“. Bulletin de l'Académie vétérinaire de France 174 (2021). http://dx.doi.org/10.3406/bavf.2021.70961.
Der volle Inhalt der QuelleDissertationen zum Thema "Présurseurs des organes sensoriels"
Kim, Jang-Mi. „Quantitative live imaging analysis of proneural factor dynamics during lateral inhibition in Drosophila“. Electronic Thesis or Diss., Sorbonne université, 2022. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2022SORUS585.pdf.
Der volle Inhalt der QuelleLateral inhibition by Notch is a conserved mechanism that regulates the formation of regular patterns of cell fates1. In many tissues, intercellular Delta-Notch signaling coordinates in time and space binary fate decisions thought to be stochastic. In the context of sensory organ development in Drosophila, it has been proposed that fate symmetry breaking between equipotent cells relies on random fluctuations in the level of Delta/Notch2 (or one of their upstream regulators, e.g. YAP1 in the mouse gut3), with small differences being amplified and stabilized to generate distinct fates. Notch-mediated stochastic fate choices may also be biased by intrinsic, i.e. cell history4, or extrinsic factors. Although lateral inhibition has been extensively studied in many developmental contexts, a detailed in vivo analysis of fate and signaling dynamics is still lacking. Here, we used a quantitative live imaging approach to study the dynamics of sensory organ fate specification in the Drosophila abdomen. The accumulation of the transcription factor Scute (Sc), a key regulator of sensory organ formation in the abdomen, was used as a proxy to monitor proneural competence and SOP fate acquisition in developing pupae expressing GFP-tagged Sc. We generated high spatial and temporal resolution movies and segmented/tracked all nuclei using a custom-made pipeline. This allowed us to quantitatively study Sc dynamics in all cells. Having defined a fate difference index (FDI), we found that symmetry breaking can be detected early, when cells expressed very low and heterogeneous levels of Sc. We also observed rare cases of late fate resolution, e.g. when two cells close to each other accumulate high levels of GFP-Scute before being pulled away from each other. Interestingly, we did not observe a rapid decrease in GFP-Sc levels in non-selected cells right after symmetry breaking. Also, the rate of change of FDI values after symmetry breaking appeared to positively correlate with cell-to-cell heterogeneity in Sc levels. Whether increased heterogeneity is causally linked to symmetry breaking remains to be tested. We next addressed if this stochastic fate decision is biased by birth order (as proposed in the context of the AC/VU decision in worms4) or by the size and geometry of cell-cell contacts (as modeling suggested5). We found that neither appeared to significantly influence Notch-mediated binary fate decisions in the Drosophila abdomen. In conclusion, our live imaging data provide a detailed analysis of proneural dynamics during lateral inhibition in Drosophila
Leyns, Luc. „Patterns des organes sensoriels: Isolement et étude de gènes“. Doctoral thesis, Universite Libre de Bruxelles, 1991. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/213027.
Der volle Inhalt der QuelleCourtier-Orgogozo, Virginie. „Formation des organes sensoriels chez D. Melanogaster : lignages cellulaires, apoptose et évolution“. Paris 6, 2003. http://www.theses.fr/2003PA066242.
Der volle Inhalt der QuelleVervoort, Michel. „De la formation des organes sensoriels de la drosophile-aspects génétiques et évolutives“. Doctoral thesis, Universite Libre de Bruxelles, 1996. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/212350.
Der volle Inhalt der QuelleSchuster, Kevin. „Se trouver, se perdre, se retrouver : innervation des organes sensoriels de la ligne latérale“. Thesis, Montpellier 2, 2011. http://www.theses.fr/2011MON20008.
Der volle Inhalt der QuelleIn this thesis, I address the question of how peripheral axons of sensory neurons find their distant target organs. In the case of the posterior lateral line (PLL) system of zebrafish, sensory organs are deposited by a migrating primordium and sensory neurites accompany this primordium during its migration. In this way, the neurites are guided to their prospective target organs. I show that the inactivation of «Glial cell line Derived Neurotrophic Factor » (GDNF) signaling leads to the inability of sensory axons to track the migrating primordium. GDNF signaling is also used as a guidance cue during axonal regeneration following nerve cut. I conclude that GDNF is a major determinant of directed neuritic growth and of target finding in this system, and propose that GDNF acts by promoting local neurite outgrowth. Further, I demonstrate that «Brain Derived Neurotrophic Factor » (BDNF) signaling exerts another role in PLL development as it is essent ial to anchor and properly connect axons to their targets organs.In another project, we could demonstrate that the development of the embryonic PLL of the atlantic blue-fin tuna shows striking similarities to that of the relatively basal zebrafish, including that PLL axons follow the migrating primordium
Gautier, Philippe. „Recherche et caractérisation d'un gène impliqué dans les étapes finales de la formation des organes sensoriels de drosophila melanogaster“. Doctoral thesis, Universite Libre de Bruxelles, 1995. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/212577.
Der volle Inhalt der QuelleBesson, Charlotte. „Division asymétrique et remodelage de la polarité épithéliale : dynamique de la polarisation des cellules précurseurs des organes sensoriels externes chez drosophila melanogaster“. Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066318/document.
Der volle Inhalt der QuelleDuring development, cell fate diversity can be generated by asymmetric cell division. As fate asymmetry can result from the unequal segregation at mitosis of cell fate determinants, polarization of the mother cell is essential for this process. The epithelial Sensory Organ Precursor cells (SOPs) divide asymmetrically within the plane of the notum epithelium in Drosophila. Planar polarization of mitotic SOPs critically depends on the asymmetric distribution of the PAR polarity complex. Nevertheless, PAR proteins are also involved in the maintenance of epithelial apico-basal polarity. When and how this epithelial polarity is remodelled to allow planar polarization of the PAR complex is unknown. During my thesis, I developed a quantitative live-imaging approach to monitor polarization of the PAR proteins. I showed that the three members of the PAR complex (Bazooka (Baz), Par6 and atypical Protein Kinase C (aPKC)) become planar polarized prior to mitosis and identified Planar Cell Polarity (PCP) as the initial symmetry breaking input. Expanded (Ex) and p120/catenin (p120ctn) were identified as SOP-specific regulators of Crumbs and AJ dynamics, respectively, that negatively regulate planar polarization in SOPs. This work led to a model whereby decreasing levels of Ex and p120ctn in SOPs increases free Par6-aPKC and Baz to promote the formation and polarization of the Baz-Par6-aPKC complex. Thus, this study links fate determination to asymmetric cell division and provides a general framework to understand how epithelial cells can divide asymmetrically despite having junctions
Besson, Charlotte. „Division asymétrique et remodelage de la polarité épithéliale : dynamique de la polarisation des cellules précurseurs des organes sensoriels externes chez drosophila melanogaster“. Electronic Thesis or Diss., Paris 6, 2014. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2014PA066318.pdf.
Der volle Inhalt der QuelleDuring development, cell fate diversity can be generated by asymmetric cell division. As fate asymmetry can result from the unequal segregation at mitosis of cell fate determinants, polarization of the mother cell is essential for this process. The epithelial Sensory Organ Precursor cells (SOPs) divide asymmetrically within the plane of the notum epithelium in Drosophila. Planar polarization of mitotic SOPs critically depends on the asymmetric distribution of the PAR polarity complex. Nevertheless, PAR proteins are also involved in the maintenance of epithelial apico-basal polarity. When and how this epithelial polarity is remodelled to allow planar polarization of the PAR complex is unknown. During my thesis, I developed a quantitative live-imaging approach to monitor polarization of the PAR proteins. I showed that the three members of the PAR complex (Bazooka (Baz), Par6 and atypical Protein Kinase C (aPKC)) become planar polarized prior to mitosis and identified Planar Cell Polarity (PCP) as the initial symmetry breaking input. Expanded (Ex) and p120/catenin (p120ctn) were identified as SOP-specific regulators of Crumbs and AJ dynamics, respectively, that negatively regulate planar polarization in SOPs. This work led to a model whereby decreasing levels of Ex and p120ctn in SOPs increases free Par6-aPKC and Baz to promote the formation and polarization of the Baz-Par6-aPKC complex. Thus, this study links fate determination to asymmetric cell division and provides a general framework to understand how epithelial cells can divide asymmetrically despite having junctions
Faucheux, Michel J. „Recherches sur les organes sensoriels impliques dans le comportement de ponte chez deux lepidopteres a larves keratinophages : tineola bisselliella humm. et monopis crocicapitella clem. (tineidae)“. Nantes, 1987. http://www.theses.fr/1987NANT2046.
Der volle Inhalt der QuelleFaucheux, Michel J. „Recherches sur les organes sensoriels impliqués dans le comportement de ponte chez deux lépidoptères à larves kératinophages, Tineola bisselliella Humm, et Monopis crocicapitella Clem. (Tineidae)“. Grenoble 2 : ANRT, 1987. http://catalogue.bnf.fr/ark:/12148/cb37604981n.
Der volle Inhalt der QuelleBücher zum Thema "Présurseurs des organes sensoriels"
Pendoué, Materne. Récit Originel de la Création Biblique Ou l'automatisation de la Fonctionnalité des Organes Sensoriels. Independently Published, 2020.
Den vollen Inhalt der Quelle findenPendoué, Materne. Synchronisation des 05 Calendriers : 8960 Corps Libres Dans le Cosmos - 6060 Intensités des Phénomènes Paranormaux -11 Organes Vitaux - 06 Organes Sensoriels - Chiffre de la Bête: 686 - 05 Autels. Independently Published, 2020.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Présurseurs des organes sensoriels"
Math, François, Jean-Pierre Kahn und Jean-Pierre Vignal. „Chapitre 4. Les organes sensoriels“. In Neurosciences cliniques, 159–230. De Boeck Supérieur, 2008. http://dx.doi.org/10.3917/dbu.math.2008.01.0159.
Der volle Inhalt der Quelle