Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Pressure-Wave-Propagation method“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Pressure-Wave-Propagation method" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Pressure-Wave-Propagation method"
HoIe, S. „Recent developments in the pressure wave propagation method“. IEEE Electrical Insulation Magazine 25, Nr. 3 (Mai 2009): 7–20. http://dx.doi.org/10.1109/mei.2009.4976898.
Der volle Inhalt der QuelleMiyazaki, Yusuke, Jon Farmer, Miki Morimatsu, Shota Ito, Séan Mitchell und Paul Sherratt. „Brain Pressure Wave Propagation during Baseball Impact“. Proceedings 49, Nr. 1 (15.06.2020): 149. http://dx.doi.org/10.3390/proceedings2020049149.
Der volle Inhalt der QuelleTommasin, Caenen, Verhegghe, Greenwald und Segers. „Physics of Within-Tissue Wave Propagation Generated by Pulse Propagation in the Carotid Artery“. Applied Sciences 9, Nr. 14 (18.07.2019): 2878. http://dx.doi.org/10.3390/app9142878.
Der volle Inhalt der QuelleZhang, Xiu Hua, und Yan Yan Wu. „Numerical Analysis of Shock Wave Propagation Law of Internal Gas Explosion“. Applied Mechanics and Materials 105-107 (September 2011): 299–302. http://dx.doi.org/10.4028/www.scientific.net/amm.105-107.299.
Der volle Inhalt der QuelleWilliam-Louis, M. J. P., und C. Tournier. „Calculation of Pressure Wave Propagation Through a Tube Junction“. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 210, Nr. 3 (Mai 1996): 239–44. http://dx.doi.org/10.1243/pime_proc_1996_210_193_02.
Der volle Inhalt der QuelleWei, Kang, Yuangui Mei, Qi Sun und Xiao Hu. „Propagation Characteristics of Initial Compression Wave Induced by 400 km/h High-Speed Trains Passing through Very Long Tunnels“. Applied Sciences 14, Nr. 13 (08.07.2024): 5946. http://dx.doi.org/10.3390/app14135946.
Der volle Inhalt der QuelleSun, Yali, Feihu Zheng, Zhenlian An, Yewen Zhang, Stephane Hole, Zhien Zhu, Liming Yang et al. „Pressure wave propagation method for space charge measurement in coaxial geometry“. IEEE Transactions on Dielectrics and Electrical Insulation 25, Nr. 6 (Dezember 2018): 2139–46. http://dx.doi.org/10.1109/tdei.2018.007234.
Der volle Inhalt der QuelleYang, Jun, Junhua He, Dezhi Zhang, Haibin Xu, Guokai Shi, Min Zhang, Wenxiang Liu und Yang Zhang. „Local Phase-Amplitude Joint Correction for Free Surface Velocity of Hopkinson Pressure Bar“. Applied Sciences 10, Nr. 15 (04.08.2020): 5390. http://dx.doi.org/10.3390/app10155390.
Der volle Inhalt der QuelleAkkas, N., und F. Erdogan. „The Residual Variable Method Applied to Acoustic Wave Propagation from a Spherical Surface“. Journal of Vibration and Acoustics 115, Nr. 1 (01.01.1993): 75–80. http://dx.doi.org/10.1115/1.2930318.
Der volle Inhalt der QuelleShatalova, N., T. Apasov, Al Shatalov und B. Grigoriev. „Renovation method of restoring well productivity using wavefields“. Journal of Mining Institute 258 (30.12.2022): 986–97. http://dx.doi.org/10.31897/pmi.2022.108.
Der volle Inhalt der QuelleDissertationen zum Thema "Pressure-Wave-Propagation method"
Gunasekaran, Barani. „Development and validation of a pressure based CFD methodology for acoustic wave propagation and damping“. Thesis, Loughborough University, 2011. https://dspace.lboro.ac.uk/2134/8740.
Der volle Inhalt der QuelleWilliam-Louis, Mame Jean Pierre. „Etude aérothermodynamique de la propagation des ondes de pression lors de la circulation des trains en tunnels simples ou ramifiés“. Valenciennes, 1994. https://ged.uphf.fr/nuxeo/site/esupversions/8a9bc601-5e51-4f33-9b4d-97889ee8f87e.
Der volle Inhalt der QuelleZheng, Lin. „Étude et caractérisation des interfaces conducteur/isolant par la méthode de l'onde de pression“. Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS288.
Der volle Inhalt der QuelleThe interfaces between a conductor and an insulator are generally assumed to be perfect, meaning that the Debye length in the insulator is considered to be much larger than its thickness. However, this work shows that this is not the case and that interface states generate a contact potential that can significantly alter the behavior of the interface when the material is subjected to a strong electric field. Indeed, the interface dipole responsible for the interface voltage modifies the curvature of the energy bands and thus either promotes or hinders charge injection or extraction. A series of experiments was conducted using the pressure wave method, implemented with a high-power acoustic generator on various polyethylene samples, with different electrodes and under various experimental conditions. The interface dipoles observed through measurement do indeed influence charge injection when the material is under high voltage. It is noteworthy that aluminum has a greater influence, particularly when used with silicone oil. When the insulator does not have electrodes, it is preferable to directly couple it with a carbon-filled polymer and silicone oil rather than deposit electrodes on it under vacuum. The interface dipole observed is indeed closer to that seen with carbon-filled polymer electrodes hot-bonded to the material. Upon applying voltage, charges initially penetrate the sample due to the interface dipole. The migration of these charges then leads to secondary injections caused by a field effect. Fluorinating the surface of the samples did not significantly improve the situation and thus does not act as a shield against charges, but rather as a barrier to the diffusion of impurities
Widehammar, Svante. „A Method for Dispersive Split Hopkinson Pressure Bar Analysis Applied to High Strain Rate Testing of Spruce Wood“. Doctoral thesis, Uppsala University, Department of Materials Science, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-2872.
Der volle Inhalt der QuelleEn metod för dispersiv analys av försök med delad hopkinsonstång tillämpad på provning av granved vid hög töjningshastighet
Syftet var att etablera en metod för att studera sambandet mellan spänning och töjning för granved vid hög töjningshastighet. Detta åstadkoms genom att anpassa och något vidareutveckla tekniken med delad hopkinsonstång ("Split Hopkinson Pressure Bar", SHPB).
Vanligtvis har hopkinsonstavar cirkulärt tvärsnitt och en diameter som är mycket mindre än de verksamma våglängderna. Under sådana förhållanden är vågutbredningen i stängerna approximativt ickedispersiv, och en endimensionell (1D) vågutbredningsmodell kan användas. När det, som är fallet i denna studie, däremot inte kan säkerställas att stängernas tvärdimensioner är små i förhållande till våglängderna, är en helt igenom 1D vågutbredningsmodell otillräcklig, och tvärsnittets geometri, vilken var kvadratisk i denna studie, måste beaktas. Därför utvecklades med hjälp av Hamiltons princip en approximativ 3D vågutbredningsmodell för stänger med godtyckligt tvärsnitt. Modellen ger ett dispersionssamband (vågtal som funktion av vinkelfrekvens) samt medelvärden för förskjutningar och spänningar över gränsytorna mellan stänger och provstav. En kalibreringsprocedur utvecklades också.
Provning av granved genomfördes vid hög töjningshastighet (omkring 103 s-1) med den anpassade SHPB-tekniken, samt för jämförelse vid låg (8×10-3 s-1) och måttlig (17 s-1) töjningshastighet med en servohydraulisk provningsmaskin. Fukthalterna i veden motsvarade ugnstorr, fibermättnad och fullständig mättnad, och proven utfördes i radiell, tangentiell och axiell riktning i förhållande till trädets stam. För vart fall utfördes fem försök vid rumstemperatur. Resultaten visar töjningshastighetsberoendet för sambandet mellan spänning och töjning för granved under alla studerade förhållanden.
The aim was to establish a method for studying the relation between stress and strain in spruce wood at high strain rate. This was achieved by adapting and somewhat further developing the split Hopkinson pressure bar (SHPB) technique.
Hopkinson bars usually have a circular cross-section and a diameter much smaller than the operative wavelengths. The wave propagation in the bar is then approximately non-dispersive and a one-dimensional (1D) wave propagation model can be used. When, as in this study, it is not certain that the transverse dimensions of the bars are small in relation to the wavelengths, a solely 1D wave propagation model is insufficient and the geometry of the cross-section, which was square in this study, must be taken into account. Therefore, an approximate 3D wave propagation model for bars with arbitrary cross-section was developed using Hamilton's principle. The model provides a dispersion relation (wavenumber vs. angular frequency) and average values for displacements and stresses over the bar/specimen interfaces. A calibration procedure was also developed.
Tests on spruce wood specimens were carried out at a high strain rate (about 103 s-1) using the adapted SHPB technique, and for comparison at low (8×10-3 s-1) and medium (17 s-1) strain rates using a servohydraulic testing machine. The moisture contents of the wood specimens corresponded to oven dry, fibre saturated and fully saturated, and the testing was performed in the radial, tangential and axial directions relative to the stem of the tree. In each case, five tests were run at room temperature. The results show the strain rate dependence of the relation between stress and strain for spruce wood under all conditions studied.
Resch, Janelle. „Nonlinear Wave Propagation in Brass Instruments“. Thesis, 2012. http://hdl.handle.net/10012/7282.
Der volle Inhalt der QuelleRoach, Lisa Aretha Nyala. „Temporal Variations in the Compliance of Gas Hydrate Formations“. Thesis, 2012. http://hdl.handle.net/1807/44081.
Der volle Inhalt der QuelleBuchteile zum Thema "Pressure-Wave-Propagation method"
O'Donovan, J., C. O'Sullivan und G. Marketos. „Micromechanics of Seismic Wave Propagation in Granular Materials“. In Discrete Element Modelling of Particulate Media, 245–54. The Royal Society of Chemistry, 2012. http://dx.doi.org/10.1039/bk9781849733601-00245.
Der volle Inhalt der QuelleYang, Jing, Li-hong Gu, Kai Wang, Jiong Zhu, Ying-ying Zhao, Wei-feng Shi, Min Lin, Jian Yang und Wen-Rong Si. „Simulation Study on Ultrasonic Signal Propagation Characteristics of Partial Discharge in Transformers“. In Advances in Transdisciplinary Engineering. IOS Press, 2024. http://dx.doi.org/10.3233/atde231268.
Der volle Inhalt der QuelleTimushev, Sergey, Andrey Aksenov und Jiawen Li. „Acoustic-Vortex Decomposition Method for CFD-CAA Study of Blade Machine Noise“. In Vortex Dynamics - Theoretical, Experimental and Numerical Approaches [Working Title]. IntechOpen, 2024. http://dx.doi.org/10.5772/intechopen.1006111.
Der volle Inhalt der QuelleYang, Jing, Kai Wang, Li-hong Gu, Hao-lu Hu, Yao-jun Zhou, Jia-yu Liu, An-feng Jiang, Jian Yang und Wen-rong Si. „Research on Partial Discharge Localization Method of Transformer Based on the Simulated Annealing Algorithm“. In Advances in Transdisciplinary Engineering. IOS Press, 2024. http://dx.doi.org/10.3233/atde231267.
Der volle Inhalt der QuelleDjojodihardjo, Harijono. „Acoustic Method for the Suppression of Acoustic and Aerodynamically Induced Vibration on Structures“. In Modeling and Simulation Techniques in Structural Engineering, 1–37. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-0588-4.ch001.
Der volle Inhalt der QuelleGlass, Irvine I., und J. P. Sislian. „Transition Fronts“. In Nonstationary Flows and Shock Waves, 19–45. Oxford University PressOxford, 1994. http://dx.doi.org/10.1093/oso/9780198593881.003.0003.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Pressure-Wave-Propagation method"
Haque, N., S. Dalai, S. Chakravorti und B. Chatterjee. „Space charge measurement in dielectrics using Pressure Wave Propagation method“. In 2015 International Conference on Condition Assessment Techniques in Electrical Systems (CATCON). IEEE, 2015. http://dx.doi.org/10.1109/catcon.2015.7449540.
Der volle Inhalt der QuelleHaque, Nasirul, Biswendu Chatterjee und Sivaji Chakravorti. „Simulation of pressure wave propagation method for space charge measurement in dielectrics“. In 2015 International Conference on Energy, Power and Environment: Towards Sustainable Growth (ICEPE). IEEE, 2015. http://dx.doi.org/10.1109/epetsg.2015.7510111.
Der volle Inhalt der QuelleSalame, Basil, und Stephane Hole. „The pressure wave propagation method for the study of interface electric field“. In 2015 IEEE Electrical Insulation Conference. IEEE, 2015. http://dx.doi.org/10.1109/icacact.2014.7223595.
Der volle Inhalt der QuelleCheng, Lin, Lisheng Zhong, Yue Zhang und Jingliang Chen. „Study on electrical properties of cell suspension by the pressure wave propagation method“. In 2010 10th IEEE International Conference on Solid Dielectrics (ICSD). IEEE, 2010. http://dx.doi.org/10.1109/icsd.2010.5568008.
Der volle Inhalt der QuelleSatoh, Y. „Observation of charge behavior in organic photoconductor using the pulsed electroacoustic method and pressure wave propagation method“. In Seventh International Conference on Dielectric Materials, Measurements and Applications. IEE, 1996. http://dx.doi.org/10.1049/cp:19961003.
Der volle Inhalt der QuelleFukuyoshi, F., D. Gotoh, Y. Tanaka, T. Takada, R. Watanabe, N. Tomita und R. Liu. „Observation of charge accumulation process in electron beam irradiated polymers using pressure wave propagation method“. In Proceedings of 2005 International Symposium on Electrical Insulating Materials, 2005. (ISEIM 2005). IEEE, 2005. http://dx.doi.org/10.1109/iseim.2005.193554.
Der volle Inhalt der QuelleNdour, Assane, Stephane Hole, Paul Leblanc und Thierry Paillat. „Direct observation of charge effects at liquid-solid interface with the pressure-wave-propagation method“. In 2020 IEEE 3rd International Conference on Dielectrics (ICD). IEEE, 2020. http://dx.doi.org/10.1109/icd46958.2020.9341861.
Der volle Inhalt der QuelleHaque, Nasirul, Biswendu Chatterjee und Sivaji Chakravorti. „Modeling of a piezoelectric transducer for application in space charge detection using pressure wave propagation method“. In 2015 International Conference on Energy Economics and Environment (ICEEE). IEEE, 2015. http://dx.doi.org/10.1109/energyeconomics.2015.7235093.
Der volle Inhalt der QuelleYali Sun, Yewen Zhang, Stephane Hole, Peng Ma, Feihu Zheng und Zhenlian An. „Physical model of measuring space charge distribution by Pressure Wave Propagation method for high voltage cable“. In 2016 International Conference on Condition Monitoring and Diagnosis (CMD). IEEE, 2016. http://dx.doi.org/10.1109/cmd.2016.7757832.
Der volle Inhalt der QuelleSato, Keiichi, Youhei Wada, Yoshitaka Noto und Yasuhiro Sugimoto. „Reentrant Motion in Cloud Cavitation due to Cloud Collapse and Pressure Wave Propagation“. In ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-30350.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Pressure-Wave-Propagation method"
Hart, Carl R., und Gregory W. Lyons. A Measurement System for the Study of Nonlinear Propagation Through Arrays of Scatterers. Engineer Research and Development Center (U.S.), November 2020. http://dx.doi.org/10.21079/11681/38621.
Der volle Inhalt der Quelle