Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Predictive lead scoring“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Predictive lead scoring" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Predictive lead scoring"
Jacheć, Wojciech, Anna Polewczyk, Maciej Polewczyk, Andrzej Tomasik und Andrzej Kutarski. „Transvenous Lead Extraction SAFeTY Score for Risk Stratification and Proper Patient Selection for Removal Procedures Using Mechanical Tools“. Journal of Clinical Medicine 9, Nr. 2 (28.01.2020): 361. http://dx.doi.org/10.3390/jcm9020361.
Der volle Inhalt der QuelleWang, Yan, und Zhisheng Wu. „The establishment of a stroke-associated pneumonia predictive scoring system“. Neurology Asia 26, Nr. 3 (September 2021): 485–90. http://dx.doi.org/10.54029/2021xdx.
Der volle Inhalt der QuelleMacCann, Carolyn, Gerald Matthews, Moshe Zeidner und Richard D. Roberts. „PSYCHOLOGICAL ASSESSMENT OF EMOTIONAL INTELLIGENCE: A REVIEW OF SELF‐REPORT AND PERFORMANCE‐BASED TESTING“. International Journal of Organizational Analysis 11, Nr. 3 (01.03.2003): 247–74. http://dx.doi.org/10.1108/eb028975.
Der volle Inhalt der QuellePrelevic, Rade, Miroslav Stojadinovic, Dejan Simic, Aleksandar Spasic und Nikola Petrovic. „Scoring system development for prediction of extravesical bladder cancer“. Vojnosanitetski pregled 71, Nr. 9 (2014): 851–57. http://dx.doi.org/10.2298/vsp130814040p.
Der volle Inhalt der QuelleAggarwal, Amulya, Alok V. Mathur, Ram K. Verma, Megha Gupta und Dheeraj Raj. „Comparison of BISAP and Ranson’s score for predicting severe acute pancreatitis and establish the validity of BISAP score“. International Surgery Journal 7, Nr. 5 (23.04.2020): 1473. http://dx.doi.org/10.18203/2349-2902.isj20201854.
Der volle Inhalt der QuelleBontempi, Luca, Antonio Curnis, Paolo Della Bella, Manuel Cerini, Andrea Radinovic, Lorenza Inama, Francesco Melillo et al. „The MB score: a new risk stratification index to predict the need for advanced tools in lead extraction procedures“. EP Europace 22, Nr. 4 (22.02.2020): 613–21. http://dx.doi.org/10.1093/europace/euaa027.
Der volle Inhalt der QuelleChua, Siang Li, und Wai Leng Chow. „Development of predictive scoring model for risk stratification of no-show at a public hospital specialist outpatient clinic“. Proceedings of Singapore Healthcare 28, Nr. 2 (20.08.2018): 96–104. http://dx.doi.org/10.1177/2010105818793155.
Der volle Inhalt der QuelleAdachi, Kazuhide, Takeshi Kawase, Kazunari Yoshida, Takahito Yazaki und Satoshi Onozuka. „ABC Surgical Risk Scale for skull base meningioma: a new scoring system for predicting the extent of tumor removal and neurological outcome“. Journal of Neurosurgery 111, Nr. 5 (November 2009): 1053–61. http://dx.doi.org/10.3171/2007.11.17446.
Der volle Inhalt der QuelleTazenkova, Olga Andreevna. „Application of Credit Risk Scoring Methods in Corporate Borrower Monitoring“. Russian Digital Libraries Journal 24, Nr. 4 (12.09.2021): 689–709. http://dx.doi.org/10.26907/1562-5419-2021-24-4-689-709.
Der volle Inhalt der QuelleSuppramote, Orawan, Prapatsara Pongpunpisand, Kanlaya Ladkam und Somkiat Rujirawat. „A novel risk score for prediction of hypersensitivity reactions in cancer patients receiving carboplatin: Retrospective observational analysis.“ Journal of Clinical Oncology 34, Nr. 3_suppl (20.01.2016): e282-e282. http://dx.doi.org/10.1200/jco.2016.34.3_suppl.e282.
Der volle Inhalt der QuelleDissertationen zum Thema "Predictive lead scoring"
Etminan, Ali. „Prediction of Lead Conversion With Imbalanced Data : A method based on Predictive Lead Scoring“. Thesis, Linköpings universitet, Statistik och maskininlärning, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-176433.
Der volle Inhalt der QuellePereira, Rita Mafalda Magalhães. „Building a predictive lead scoring model for contact prioritization : the case of HUUB“. Master's thesis, 2021. http://hdl.handle.net/10400.14/34877.
Der volle Inhalt der QuelleNas últimas décadas, o machine learning tornou-se bastante popular para resolver problemas organizacionais, já que tende a produzir soluções eficientes e de alta qualidade. Adicionalmente, a quantidade de dados colecionados pelas empresas cresceu substancialmente, o que contribuiu para esta tendência. As empresas não têm recursos suficientes para contactar todos os leads, pelo que é essencial priorizá-los. O lead scoring apoia esta tarefa, ao atribuir um valor para cada lead baseado nas suas ações ou características. Embora seja expectável que o lead scoring contribua para melhores taxas de conversão, ainda é escassa a literatura acerca da automatização deste processo através do machine learning. Esta dissertação expõe como combinar supervised learning e dados históricos de sistemas de Customer Relationship Management para desenvolver um modelo de lead scoring para empresas. A abordagem baseia-se no método CRISP-DM, onde diversas ferramentas foram usadas, nomeadamente o HubSpot, o Microsoft Power BI e o RStudio. O modelo de classificação proposto é uma árvore de decisão que prevê o desfecho de conversão dos leads, desenvolvido com o algoritmo CART e dados de uma empresa de logística – a HUUB. As principais descobertas deste projeto concluem que é viável utilizar o machine learning para desenvolver um modelo de lead scoring para priorizar os contactos. Contudo, há fatores que devem ser tidos em conta, especialmente relacionados com os dados, já que podem impactar o desempenho do modelo. Por fim, sugere-se para pesquisa futura o desenvolvimento de um estudo experimental que compare os resultados do lead scoring automatizado e manual, de forma a avaliar se o machine learning é de facto a melhor alternativa.
Buchteile zum Thema "Predictive lead scoring"
Chua, Siang Li, und Wai Leng Chow. „Use of Predictive and Simulation Models to Develop Strategies for Better Access Specialists Care“. In Advances in Medical Technologies and Clinical Practice, 109–36. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-0047-7.ch007.
Der volle Inhalt der Quelle„Amputation“. In Standards for the Management of Open Fractures, herausgegeben von Simon Eccles, Bob Handley, Umraz Khan, Iain McFadyen, Jagdeep Nanchahal und Selvadurai Nayagam, 111–24. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198849360.003.0012.
Der volle Inhalt der QuellePoluru, Ravi Kumar, Bharath Bhushan, Basha Syed Muzamil, Praveen Kumar Rayani und Praveen Kumar Reddy. „Applications of Domain-Specific Predictive Analytics Applied to Big Data“. In Advances in Business Information Systems and Analytics, 289–306. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-4999-4.ch016.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Predictive lead scoring"
Muhlbauer, W. Kent, Derek Johnson, Elaine Hendren und Steve Gosse. „A New Generation of Pipeline Risk Algorithms“. In 2006 International Pipeline Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/ipc2006-10178.
Der volle Inhalt der Quelle