Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Prediction Of Malignant“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Prediction Of Malignant" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Prediction Of Malignant"
Sukanya L. „Risk of malignancy index (RMI) for prediction of malignancy in women with adnexal masses“. International Journal of Research in Pharmaceutical Sciences 13, Nr. 3 (26.09.2022): 339–42. http://dx.doi.org/10.26452/ijrps.v13i3.2733.
Der volle Inhalt der QuelleWang, Xiuchao, Junjin Wang, Xi Wei, Lihui Zhao, Bo Ni, Zekun Li, Chuntao Gao et al. „Preoperative ultrasound combined with routine blood tests in predicting the malignant risk of pancreatic cystic neoplasms“. Cancer Biology & Medicine 19, Nr. 10 (01.11.2022): 1503–16. http://dx.doi.org/10.20892/j.issn.2095-3941.2022.0258.
Der volle Inhalt der QuelleLi, Tingting, Yanjie Li, Yingqi Yang, Juan Li, ZiYue Hu, Lu Wang, Wei Pu, Ting Wei und Man Lu. „Logistic regression analysis of ultrasound findings in predicting the malignant and benign phyllodes tumor of breast“. PLOS ONE 17, Nr. 3 (24.03.2022): e0265952. http://dx.doi.org/10.1371/journal.pone.0265952.
Der volle Inhalt der QuelleSwan, Kristine Zøylner, Steen Joop Bonnema, Marie Louise Jespersen und Viveque Egsgaard Nielsen. „Reappraisal of shear wave elastography as a diagnostic tool for identifying thyroid carcinoma“. Endocrine Connections 8, Nr. 8 (August 2019): 1195–205. http://dx.doi.org/10.1530/ec-19-0324.
Der volle Inhalt der QuelleCarlsson, Leo S., Mikael Vejdemo-Johansson, Gunnar Carlsson und Pär G. Jönsson. „Fibers of Failure: Classifying Errors in Predictive Processes“. Algorithms 13, Nr. 6 (23.06.2020): 150. http://dx.doi.org/10.3390/a13060150.
Der volle Inhalt der QuelleKaseb, Hatem, Ahmad Charifa, Rita Abi-Raad, Guoping Cai, Lynwood Hammers, Manju Prasad und Adebowale Adeniran. „Concordance Between the TIRADS Ultrasound Scoring Criteria, Fine-Needle Aspiration Cytology, and Thyroid Final Resection Diagnosis“. American Journal of Clinical Pathology 152, Supplement_1 (11.09.2019): S92. http://dx.doi.org/10.1093/ajcp/aqz118.001.
Der volle Inhalt der QuelleCarter, J. R., J. M. Fowler, J. W. Carlson, L. F. Carson, L. L. Adcock und L. B. Twiggs. „Prediction of malignancy using transvaginal color flow Doppler in patients with gynecologic tumors“. International Journal of Gynecologic Cancer 3, Nr. 5 (1993): 279–84. http://dx.doi.org/10.1046/j.1525-1438.1993.03050279.x.
Der volle Inhalt der QuelleOhno, Riki, Ryuichi Kawamoto, Mami Kanamoto, Jota Watanabe, Masahiko Fujii, Hiromi Ohtani, Masamitsu Harada, Teru Kumagi und Hideki Kawasaki. „Neutrophil to Lymphocyte Ratio is a Predictive Factor of Malignant Potential for Intraductal Papillary Mucinous Neoplasms of the pancreas“. Biomarker Insights 14 (Januar 2019): 117727191985150. http://dx.doi.org/10.1177/1177271919851505.
Der volle Inhalt der QuelleYamanaka, Shoichiro, Naoki Kawahara, Ryuji Kawaguchi, Keita Waki, Tomoka Maehana, Yosuke Fukui, Ryuta Miyake, Yuki Yamada, Hiroshi Kobayashi und Fuminori Kimura. „The Comparison of Three Predictive Indexes to Discriminate Malignant Ovarian Tumors from Benign Ovarian Endometrioma: The Characteristics and Efficacy“. Diagnostics 12, Nr. 5 (12.05.2022): 1212. http://dx.doi.org/10.3390/diagnostics12051212.
Der volle Inhalt der QuelleAssegie, Tsehay Admassu, R. Lakshmi Tulasi und N. Komal Kumar. „Breast cancer prediction model with decision tree and adaptive boosting“. IAES International Journal of Artificial Intelligence (IJ-AI) 10, Nr. 1 (01.03.2021): 184. http://dx.doi.org/10.11591/ijai.v10.i1.pp184-190.
Der volle Inhalt der QuelleDissertationen zum Thema "Prediction Of Malignant"
Moitra, Dipanjan. „Deep learning model for prediction of malignant tumors in human body with special reference to multimodel imaging techniques“. Thesis, University of North Bengal, 2020. http://ir.nbu.ac.in/handle/123456789/4347.
Der volle Inhalt der QuelleDiajil, Ameena Ryhan. „An investigation into the diagnosis, prediction and management of oral potentially malignant disorders“. Thesis, University of Newcastle upon Tyne, 2012. http://hdl.handle.net/10443/1601.
Der volle Inhalt der QuelleSchiza, Aglaia. „Experimental treatment of patients with disseminated malignant melanoma“. Doctoral thesis, Uppsala universitet, Experimentell och klinisk onkologi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-330710.
Der volle Inhalt der QuelleMoitra, Dipanjan. „Deep learning model for prediction of malignant tumors in human body with special reference to multimodel imaging techniques“. Thesis, University of North Bengal, 2020. http://ir.nbu.ac.in/handle/123456789/4375.
Der volle Inhalt der QuelleGhosh, Michael [Verfasser]. „Advancing immunopeptidomics : validation of the method, improved epitope prediction, peptide-based HLA typing and discrimination of healthy and malignant tissue / Michael Ghosh“. Tübingen : Universitätsbibliothek Tübingen, 2020. http://d-nb.info/1218073012/34.
Der volle Inhalt der QuelleKüffer, Stefan Thomas [Verfasser], und Alexander [Akademischer Betreuer] Marx. „IGF1R and TYRO3 as potential biomarkers for response prediction in malignant thymomas and thymic carcinomas treated with sunitinib / Stefan Thomas Küffer ; Betreuer: Alexander Marx“. Heidelberg : Universitätsbibliothek Heidelberg, 2019. http://d-nb.info/120260806X/34.
Der volle Inhalt der QuelleKüffer, Stefan [Verfasser], und Alexander [Akademischer Betreuer] Marx. „IGF1R and TYRO3 as potential biomarkers for response prediction in malignant thymomas and thymic carcinomas treated with sunitinib / Stefan Thomas Küffer ; Betreuer: Alexander Marx“. Heidelberg : Universitätsbibliothek Heidelberg, 2019. http://d-nb.info/120260806X/34.
Der volle Inhalt der QuelleVetma, Vesna [Verfasser], und Markus [Akademischer Betreuer] Morrison. „Assessment of TRAIL sensitisation by IAP antagonist TL32711 in malignant melanoma and development of a framework for response prediction / Vesna Vetma ; Betreuer: Markus Morrison“. Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2020. http://d-nb.info/1212034449/34.
Der volle Inhalt der QuelleHagen, Jeffrey M. „CD31: Invasive Predictive Biomarker for Malignant Transformation of Oral Epithelial Dysplasia“. The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1376839992.
Der volle Inhalt der QuelleHill, Alexandra. „Digital image analysis: Predictive biomarkers for chemoimmunotherapy in malignant pleural mesothelioma“. Thesis, Hill, Alexandra (2019) Digital image analysis: Predictive biomarkers for chemoimmunotherapy in malignant pleural mesothelioma. Honours thesis, Murdoch University, 2019. https://researchrepository.murdoch.edu.au/id/eprint/54434/.
Der volle Inhalt der QuelleBücher zum Thema "Prediction Of Malignant"
Cherdanceva, Tat'yana, Vladimir Klimechev und Igor' Bobrov. Pathological and molecular biological analysis of renal cell carcinoma. Diagnosis and prognosis. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1020785.
Der volle Inhalt der QuelleMcElhinney, Veronica. A study to assess the possibility of a predictive prodrome for the development of neuroleptic malignant syndrome. [S.l: The Author], 1993.
Den vollen Inhalt der Quelle findenDurand, Melissa A. Architectural Distortion (Cancer). Herausgegeben von Christoph I. Lee, Constance D. Lehman und Lawrence W. Bassett. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190270261.003.0029.
Der volle Inhalt der QuelleTownsend, William M., und Emma C. Morris. ICU selection and outcome of patients with haematological malignancy. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0374.
Der volle Inhalt der QuelleKwon, Rachel J. Size as a Predictor of Malignancy of Adrenal Cortical Carcinoma. Herausgegeben von Randall Owen. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199384075.003.0042.
Der volle Inhalt der QuelleDoepke, Laura. Fine, Linear/Branching Calcifications. Herausgegeben von Christoph I. Lee, Constance D. Lehman und Lawrence W. Bassett. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190270261.003.0041.
Der volle Inhalt der QuelleProut, Jeremy, Tanya Jones und Daniel Martin. Thoracic anaesthesia. Oxford University Press, 2014. http://dx.doi.org/10.1093/med/9780199609956.003.0015.
Der volle Inhalt der QuelleSherman, Mark E., Melissa A. Troester, Katherine A. Hoadley und William F. Anderson. Morphological and Molecular Classification of Human Cancer. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190238667.003.0003.
Der volle Inhalt der QuelleAndrzej, Wojcik, und Colin J. Martin. Biological effects of ionizing radiation. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199655212.003.0003.
Der volle Inhalt der QuelleHarper, Lorraine, und David Jayne. The patient with vasculitis. Herausgegeben von Giuseppe Remuzzi. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199592548.003.0160.
Der volle Inhalt der QuelleBuchteile zum Thema "Prediction Of Malignant"
Toyota, S., Rudolf Graf, M. Valentino, T. Yoshimine und W. D. Heiss. „Prediction of malignant infarction: perifocal neurochemical monitoring following prolonged MCA occlusion in cats“. In Brain Edema XII, 153–57. Vienna: Springer Vienna, 2003. http://dx.doi.org/10.1007/978-3-7091-0651-8_32.
Der volle Inhalt der QuelleMadasamy, Kaliappan, Vimal Shanmuganathan, Nithish, Vishakan, Vijayabhaskar, Muthukumar, Balamurali Ramakrishnan und M. Ramnath. „Benign and Malignant Cancer Prediction Using Deep Learning and Generating Pathologist Diagnostic Report“. In Engineering Cyber-Physical Systems and Critical Infrastructures, 73–87. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-52787-6_7.
Der volle Inhalt der QuelleKumar, Vivek, Brojo Kishore Mishra, Manuel Mazzara, Dang N. H. Thanh und Abhishek Verma. „Prediction of Malignant and Benign Breast Cancer: A Data Mining Approach in Healthcare Applications“. In Advances in Data Science and Management, 435–42. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0978-0_43.
Der volle Inhalt der QuelleAnderson, Owen, Andrew C. Kidd, Keith A. Goatman, Alexander J. Weir, Jeremy P. Voisey, Vismantas Dilys, Jan P. Siebert und Kevin G. Blyth. „Estimating the False Positive Prediction Rate in Automated Volumetric Measurements of Malignant Pleural Mesothelioma“. In Biomedical Engineering Systems and Technologies, 116–39. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72379-8_7.
Der volle Inhalt der QuelleAggarwal, Ritu. „An Intelligent System for Diagnosis and Prediction of Breast Cancer Malignant Features using Machine Learning Algorithms“. In Machine Learning and Deep Learning Techniques for Medical Science, 143–51. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003217497-8.
Der volle Inhalt der QuelleSloan, Philip. „The Bi-Directional Communication Between Tumour Cells and Other Components of the Tumour Microenvironment“. In Critical Issues in Head and Neck Oncology, 1–9. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-23175-9_1.
Der volle Inhalt der QuelleLarrañaga, Pedro, Basilio Sierra, Miren J. Gallego, Maria J. Michelena und Juan M. Picaza. „Learning Bayesian Networks by Genetic Algorithms: A case study in the prediction of survival in malignant skin melanoma“. In Artificial Intelligence in Medicine, 261–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/bfb0029459.
Der volle Inhalt der QuelleSchölmerich, Jürgen, Eckart Köttgen, Brigitte A. Volk und Wolfgang Gerok. „Proteases and Antiproteases in Ascites — Differentiation of Malignant and Nonmalignant Ascites and Prediction of Coagulopathy in Ascites Retransfusion“. In Advances in Experimental Medicine and Biology, 555–60. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-1057-0_71.
Der volle Inhalt der QuelleYhap, Margaret, Allen F. Pyesmany, Lynne M. Ball, D. Christie Riddle, Jiang Mu und Dick van Velzen. „Microsatellite Instability Assessment in Prediction of Drug Resistance in Childhood Burkitt’s and Large Cell Diffuse Malignant Non-Hodgkin Lymphoma (MNHL)“. In Drug Resistance in Leukemia and Lymphoma III, 517–25. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4811-9_56.
Der volle Inhalt der QuelleMorimoto, Yasuo, Chinatsu Nishida, Taisuke Tomonaga und Hiroto Izumi. „Pleural Plaques as a Predictive Imaging Marker for Cancer Screening in Asbestos-Exposed Subjects: Can Pleural Plaques Be a Tool beyond Estimating Past Asbestos Inhalation?“ In Malignant Pleural Mesothelioma, 65–74. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9158-7_6.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Prediction Of Malignant"
Sharma, Kriti, Brahmini Muktha, Apoorva Rani und Chandrasegar Thirumalai. „Prediction of benign and malignant tumor“. In 2017 International Conference on Trends in Electronics and Informatics (ICOEI). IEEE, 2017. http://dx.doi.org/10.1109/icoei.2017.8300871.
Der volle Inhalt der QuelleMittal, Veena, Chandra Kant, Kartikey Pandey und Dinesh Pratap Singh. „Prediction of Benign or Malignant Human Cells using Artificial Intelligence“. In 2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N). IEEE, 2021. http://dx.doi.org/10.1109/icac3n53548.2021.9725525.
Der volle Inhalt der QuelleGao, Zixiong, Yufan Chen, Wuping Mai, Yao Lu, Shuyu Wu und Hongmei Liu. „Multi-task learning of perceptive feature for thyroid malignant probability prediction“. In Computer-Aided Diagnosis, herausgegeben von Karen Drukker und Maciej A. Mazurowski. SPIE, 2021. http://dx.doi.org/10.1117/12.2580697.
Der volle Inhalt der QuelleMa, Yue, Lin Liu, Jiayan Liu, Kaiming Xue, Zhe Zhou und Mengchao Zhang. „Prediction of Benign and Malignant Thymic Tumors based on Radiomics Features“. In 2019 IEEE International Conference on Mechatronics and Automation (ICMA). IEEE, 2019. http://dx.doi.org/10.1109/icma.2019.8816280.
Der volle Inhalt der QuelleKamarudin, Saddam, Ishkrizat Taib, Maliki Adnan, Fitriah Nasir, Ahmad Mubarak Tajul Ariffin, Nor Adrian Nor Salim, Nofrizal Idris Darlis, Mohd Noor Abdullah und Ali Kamil. „Prediction of heat distribution on brain malignant tumor using hyperthermia therapy“. In 12th INTERNATIONAL CONFERENCE ON MECHANICAL AND MANUFACTURING ENGINEERING 2022 (ICME’22). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0183646.
Der volle Inhalt der QuellePromtan, Santad, Phungern Khongthong und Chidchanok Choksuchat. „Breast Cancer Prediction of Benign and Malignant Tumors by Classification Algorithms“. In 2023 4th International Conference on Big Data Analytics and Practices (IBDAP). IEEE, 2023. http://dx.doi.org/10.1109/ibdap58581.2023.10271967.
Der volle Inhalt der QuelleGoh, Jasmine, Sanjay de Mel, Anand D. Jeyasekharan und Edward K. H. Chow. „Abstract PO-51: Drug combination analytics platform for accurate prediction of treatment response in refractory and relapsed lymphomas“. In Abstracts: AACR Virtual Meeting: Advances in Malignant Lymphoma; August 17-19, 2020. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/2643-3249.lymphoma20-po-51.
Der volle Inhalt der QuelleWei Heng, Wei, Eileen Su Lee Ming, Ahmad Nizar Jamaluddin, Fauzan Khairi Che Harun, Nurul Ashikin Abdul-Kadir und Che Fai Yeong. „Prediction Algorithm of Malignant Ventricular Arrhythmia Validated across Multiple Online Public Databases“. In 2019 Computing in Cardiology Conference. Computing in Cardiology, 2019. http://dx.doi.org/10.22489/cinc.2019.295.
Der volle Inhalt der QuelleLeng, William Mok Wen, Wei Wei Heng und Nurul Ashikin Abdul-Kadir. „Earlier Prediction Algorithm of Malignant Ventricular Arrhythmia on Heterogenous Databases: A Review“. In 2022 2nd International Conference on Intelligent Cybernetics Technology & Applications (ICICyTA). IEEE, 2022. http://dx.doi.org/10.1109/icicyta57421.2022.10037936.
Der volle Inhalt der QuelleWang, Jun, Xia Liu, Di Dong, Jiangdian Song, Min Xu, Yali Zang und Jie Tian. „Prediction of malignant and benign of lung tumor using a quantitative radiomic method“. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2016. http://dx.doi.org/10.1109/embc.2016.7590938.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Prediction Of Malignant"
Huang, Wei, Dahong Yang, Danyang Fan, Chao Hou und Wanqian Liu. Prognostic value of net water uptake in acute ischemic stroke: a protocol for a systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, Dezember 2021. http://dx.doi.org/10.37766/inplasy2021.12.0077.
Der volle Inhalt der QuelleGareau, Paul, und Brian K. Rutt. Prediction of Malignancy in Breast Tumors Using Diffusion Weighted Magnetic Resonance Imaging. Fort Belvoir, VA: Defense Technical Information Center, Juli 2000. http://dx.doi.org/10.21236/ada390993.
Der volle Inhalt der QuelleLochab, Dr Prachi, Dr Lata Rajoria, Dr Sunita Hemani und Dr Akanksha Akanksha. EVALUATION OF IOTA SIMPLE ULTRASOUND RULES AND HISTOPATHOLOGY TO DISTINGUISH BETWEEN BENIGN AND MALIGNANT OVARIAN TUMORS : A DESCRIPTIVE STUDY. World Wide Journals, Februar 2023. http://dx.doi.org/10.36106/ijar/5405931.
Der volle Inhalt der QuelleLi, Yu, Yi-Biing Shi und Chun-Feng Hu. PET/CT based model for predicting malignancy in pulmonary nodules: a meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, Oktober 2023. http://dx.doi.org/10.37766/inplasy2023.10.0042.
Der volle Inhalt der QuelleBai, Tian, Li-Juan Wen und Na Zhang. Predictive model for the probability of malignancy in solitary pulmonary nodules: A meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, Oktober 2021. http://dx.doi.org/10.37766/inplasy2021.10.0006.
Der volle Inhalt der Quelle