Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Precision health“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Precision health" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Precision health"
Olstad, Dana Lee, und Lynn McIntyre. „Reconceptualising precision public health“. BMJ Open 9, Nr. 9 (September 2019): e030279. http://dx.doi.org/10.1136/bmjopen-2019-030279.
Der volle Inhalt der QuelleGambhir, Sanjiv Sam, T. Jessie Ge, Ophir Vermesh und Ryan Spitler. „Toward achieving precision health“. Science Translational Medicine 10, Nr. 430 (28.02.2018): eaao3612. http://dx.doi.org/10.1126/scitranslmed.aao3612.
Der volle Inhalt der Quelleten Have, Henk, und Bert Gordijn. „Precision in health care“. Medicine, Health Care and Philosophy 21, Nr. 4 (09.10.2018): 441–42. http://dx.doi.org/10.1007/s11019-018-9870-x.
Der volle Inhalt der QuelleIelapi, Nicola, Michele Andreucci, Noemi Licastro, Teresa Faga, Raffaele Grande, Gianluca Buffone, Sabrina Mellace, Paolo Sapienza und Raffaele Serra. „Precision Medicine and Precision Nursing: The Era of Biomarkers and Precision Health“. International Journal of General Medicine Volume 13 (Dezember 2020): 1705–11. http://dx.doi.org/10.2147/ijgm.s285262.
Der volle Inhalt der QuelleKhoury, Muin J., Michael F. Iademarco und William T. Riley. „Precision Public Health for the Era of Precision Medicine“. American Journal of Preventive Medicine 50, Nr. 3 (März 2016): 398–401. http://dx.doi.org/10.1016/j.amepre.2015.08.031.
Der volle Inhalt der QuelleBranca, Malorye Allison. „TOP PRECISION MEDICINE HEALTH SYSTEMS“. Clinical OMICs 8, Nr. 6 (01.11.2021): 32–36. http://dx.doi.org/10.1089/clinomi.08.06.21.
Der volle Inhalt der QuelleDickson, Victoria Vaughan, und Gail D'Eramo Melkus. „Precision Health in Cardiovascular Conditions“. Journal of Cardiovascular Nursing 37, Nr. 1 (Januar 2022): 56–57. http://dx.doi.org/10.1097/jcn.0000000000000879.
Der volle Inhalt der QuelleCHEN, Shu-Ching. „Precision Health in Cancer Care“. Journal of Nursing Research 30, Nr. 2 (April 2022): e194. http://dx.doi.org/10.1097/jnr.0000000000000486.
Der volle Inhalt der QuelleKellogg, Ryan A., Jessilyn Dunn und Michael P. Snyder. „Personal Omics for Precision Health“. Circulation Research 122, Nr. 9 (27.04.2018): 1169–71. http://dx.doi.org/10.1161/circresaha.117.310909.
Der volle Inhalt der QuelleReich, Brian J., und Murali Haran. „Precision maps for public health“. Nature 555, Nr. 7694 (28.02.2018): 32–33. http://dx.doi.org/10.1038/d41586-018-02096-w.
Der volle Inhalt der QuelleDissertationen zum Thema "Precision health"
Sloan-Heggen, Christina Marie. „Precision health and deafness–optimizing genetic diagnosis“. Diss., University of Iowa, 2018. https://ir.uiowa.edu/etd/6287.
Der volle Inhalt der QuelleManrai, Arjun Kumar. „Statistical foundations for precision medicine“. Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/97826.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references.
Physicians must often diagnose their patients using disease archetypes that are based on symptoms as opposed to underlying pathophysiology. The growing concept of "precision medicine" addresses this challenge by recognizing the vast yet fractured state of biomedical data, and calls for a patient-centered view of data in which molecular, clinical, and environmental measurements are stored in large shareable databases. Such efforts have already enabled large-scale knowledge advancement, but they also risk enabling large-scale misuse. In this thesis, I explore several statistical opportunities and challenges central to clinical decision-making and knowledge advancement with these resources. I use the inherited heart disease hypertrophic cardiomyopathy (HCM) to illustrate these concepts. HCM has proven tractable to genomic sequencing, which guides risk stratification for family members and tailors therapy for some patients. However, these benefits carry risks. I show how genomic misclassifications can disproportionately affect African Americans, amplifying healthcare disparities. These findings highlight the value of diverse population sequencing data, which can prevent variant misclassifications by identifying ancestry informative yet clinically uninformative markers. As decision-making for the individual patient follows from knowledge discovery by the community, I introduce a new quantity called the "dataset positive predictive value" (dPPV) to quantify reproducibility when many research teams separately mine a shared dataset, a growing practice that mirrors genomic testing in scale but not synchrony. I address only a few of the many challenges of delivering sound interpretation of genetic variation in the clinic and the challenges of knowledge discovery with shared "big data." These examples nonetheless serve to illustrate the need for grounded statistical approaches to reliably use these powerful new resources.
by Arjun Kumar Manrai.
Ph. D.
Eliot, Trevor G. „Provider precision labs healthcare analytics and decision support“. Thesis, California State University, Long Beach, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10111177.
Der volle Inhalt der QuelleThe healthcare industry is undergoing a shift due to changes in revenue cycles and therefore delivery models. This shift is causing horizontal integration among providers and a subsequent assumption of risk that behooves them to operate similar to a payer. Analytics, while used predominately by healthcare payers in the past, will now be applicable to providers of care. This opens the door to a niche consulting firm that can provide these services effectively and affordably. Provider Precision Labs is an idea for a company that can render payer-like services on the scale of regional provider groups but at a manageable cost to the owner and operator.
GALASSO, ILARIA. „PRECISION MEDICINE IN SOCIETY: PROMISES, EXPECTATIONS AND CONCERNS AROUND SOCIAL AND HEALTH EQUITY“. Doctoral thesis, Università degli Studi di Milano, 2019. http://hdl.handle.net/2434/609264.
Der volle Inhalt der QuelleArnold, Matthias [Verfasser]. „Linking Precision Medicine to Public Health: An Economic Perspective on Mammography Screening / Matthias Arnold“. München : Verlag Dr. Hut, 2018. http://d-nb.info/1168534283/34.
Der volle Inhalt der QuelleMukwaya, Jovia Namugerwa. „An Investigation of Semantic Interoperability with EHR systems for Precision Dosing“. Thesis, KTH, Medicinteknik och hälsosystem, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279143.
Der volle Inhalt der QuellePicard, Yani. „Improving the precision and accuracy of Monte Carlo simulation in positron emission tomography“. Thesis, McGill University, 1993. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=68241.
Der volle Inhalt der QuelleFurthermore, simulations of PET systems waste considerable time generating events which will never be detected. For events in which the original photons are usually directed towards the detectors, the efficiency of the simulations was improved by giving the photons additional chances of being detected. For simulation programs which cascade the simulation process into source, collimation, and detection phases such as PETSIM, the additional detections resulted in an improvement in the simulation precision without requiring larger files of events from the source/phantom phase of the simulation. This also reduced the simulation time since fewer positron annihilations were needed to achieve a given statistical precision. This was shown to be a useful improvement over conventional Monte Carlo simulations of PET systems.
Krieger, Glenn. „Cephalometric regional superimpositions -- digital vs. analog accuracy and precision : 1. the maxilla“. Thesis, NSUWorks, 2014. https://nsuworks.nova.edu/hpd_cdm_stuetd/58.
Der volle Inhalt der QuelleBuran, Bradley N. (Bradley Nicholas). „Precision and reliability of cochlear nerve response in mice lacking functional synaptic ribbons“. Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/54454.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (p. 87-99).
Synaptic ribbons are electron-dense structures surrounded by vesicles and anchored to the presynaptic membrane of photoreceptors, retinal bipolar cells and hair cells. Ribbon synapses are characterized by sustained exocytosis that is graded with stimulus intensity and can achieve high release rates. Leading hypotheses implicate the ribbon in maintenance of a large readily releasable pool (RRP) of presynaptic vesicles which enables rapid and precisely-timed exocytosis that supports instantaneous discharge rates of well over 1000 spikes per second. To gain insight into the function of this specialized presynaptic molecular machinery, we characterized the response properties of single auditory nerve (AN) fibers in a mouse with targeted deletion of a presynaptic scaffolding gene, bassoon, in which ribbons are no longer anchored to the active zone. Since each mammalian AN fiber usually receives input from a single inner hair cell active zone to which a single ribbon is typically anchored, single-fiber recordings from bassoon mutants and control mice offer a sensitive functional metric of the contribution of individual ribbons to neural function. Response properties of mutant AN fibers were similar, in many respects, to wild-type. Spike intervals remained irregular, thresholds were unaffected, dynamic range was unchanged, spike synchronization to
(cont.) stimulus phase was unimpaired, the time course of post-onset adaptation and recovery from adaptation were normal, and the ability to sustain discharge throughout a long-duration stimulus was unaffected. These data indicate that the presynaptic mechanisms which regulate precise timing of exocytosis, graded release rates and sustained neurotransmitter release were not impaired by loss of the ribbon. However, reductions were seen in spontaneous and sound-evoked AN fiber discharge rates, coinciding with an increased variance of first spike timing to stimulus onset. Unlike fibers from wild-type mice, mutants failed to show increased peak rate as stimulus onset became more abrupt. The reduction of peak rates and increased first spike variance likely result from degraded reliability of discharge to stimulus onset via a mechanism such as reduced RRP size. Thus, the ribbon appears to support a large RRP that enables the rapid onset rates necessary for the auditory system to resolve stimulus features key for many perceptual tasks.
by Bradley N. Buran.
Ph.D.
McCaffrey, Kevin. „Cephalometric regional superimpositions -- digital vs. analog accuracy and precision: 2. the mandible“. Thesis, NSUWorks, 2014. https://nsuworks.nova.edu/hpd_cdm_stuetd/19.
Der volle Inhalt der QuelleBücher zum Thema "Precision health"
Shaban-Nejad, Arash, und Martin Michalowski, Hrsg. Precision Health and Medicine. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-24409-5.
Der volle Inhalt der QuelleZhao, Yichuan, und Ding-Geng Chen, Hrsg. Statistics in Precision Health. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-50690-1.
Der volle Inhalt der QuellePanesar, Arjun. Precision Health and Artificial Intelligence. Berkeley, CA: Apress, 2023. http://dx.doi.org/10.1007/978-1-4842-9162-7.
Der volle Inhalt der Quelle1949-, Burke Ed, Hrsg. Precision heart rate training. Champaign, IL: Human Kinetics, 1998.
Den vollen Inhalt der Quelle findenFrench, Melissa G., Hrsg. Relevance of Health Literacy to Precision Medicine. Washington, D.C.: National Academies Press, 2016. http://dx.doi.org/10.17226/23538.
Der volle Inhalt der QuelleAlper, Joe, Hrsg. Relevance of Health Literacy to Precision Medicine. Washington, D.C.: National Academies Press, 2016. http://dx.doi.org/10.17226/23592.
Der volle Inhalt der QuelleMaglaveras, Nicos, Ioanna Chouvarda und Paulo de Carvalho, Hrsg. Precision Medicine Powered by pHealth and Connected Health. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7419-6.
Der volle Inhalt der QuelleBurke, Edmund R. Precision heart rate training: For maximum fitness and performance. Champaign, IL: Human Kinetics, 1998.
Den vollen Inhalt der Quelle findenAlper, Joe, Andrew Bremer und Anne Linn, Hrsg. Leveraging Advances in Remote Geospatial Technologies to Inform Precision Environmental Health Decisions. Washington, D.C.: National Academies Press, 2021. http://dx.doi.org/10.17226/26265.
Der volle Inhalt der QuelleAdebayo, Derin, und Aramide Okafor. Hydrogen sulfide: Sources, detection, and health hazards. Hauppauge, N.Y: Nova Science Publishers, 2011.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Precision health"
Yu, Feliciano B. „Precision Health“. In Clinical Informatics Study Guide, 391–412. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93765-2_26.
Der volle Inhalt der QuelleTobin, John. „Children’s Right to Health“. In Precision Manufacturing, 1–22. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-3182-3_12-1.
Der volle Inhalt der QuelleBruzelius, Emilie, und James H. Faghmous. „Precision Population Health“. In Encyclopedia of Big Data, 757–60. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-319-32010-6_515.
Der volle Inhalt der QuelleBruzelius, Emilie, und James H. Faghmous. „Precision Population Health“. In Encyclopedia of Big Data, 1–4. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-32001-4_515-1.
Der volle Inhalt der QuelleFlahault, Antoine. „Precision Global Health“. In Handbook of Global Health, 1667–98. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-45009-0_70.
Der volle Inhalt der QuelleFlahault, Antoine. „Precision Global Health“. In Handbook of Global Health, 1–32. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-05325-3_70-1.
Der volle Inhalt der QuellePolley, Eric, und Yingdong Zhao. „Precision Trials Informatics“. In Health Informatics, 215–22. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18626-5_15.
Der volle Inhalt der QuelleLewis, Duncan, Ria Deakin und Frances-Louise McGregor. „Workplace Bullying, Disability and Chronic Ill Health“. In Precision Manufacturing, 1–29. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-5338-2_15-1.
Der volle Inhalt der QuelleTarabella, Angela, Leonello Trivelli und Andrea Apicella. „Precision Agriculture“. In SpringerBriefs in Food, Health, and Nutrition, 79–85. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-23811-1_6.
Der volle Inhalt der QuelleAlvarez, Maria Josefina Ruiz. „Precision Public Health Perspectives“. In Precision Medicine in Clinical Practice, 113–27. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5082-7_7.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Precision health"
Jumlesha, Shaik, S. Hrushikesava Raju, S. Adinarayna, U.Sesadri, Nabanita Choudhury und Vijaya Chandra Jadala. „Precision Health: Maximizing Well-being with IAHN Integration“. In 2024 3rd International Conference on Automation, Computing and Renewable Systems (ICACRS), 1623–30. IEEE, 2024. https://doi.org/10.1109/icacrs62842.2024.10841793.
Der volle Inhalt der QuelleFerraro, Simona, Anilkumar Dave, Dario Cattaneo, Gianvincenzo Zuccotti, Alessia Mauri, Martina Tosi, Elvira Verduci et al. „Precision Health for Children Takes First Steps in Space“. In IAF/IAA Space Life Sciences Symposium, Held at the 75th International Astronautical Congress (IAC 2024), 98–127. Paris, France: International Astronautical Federation (IAF), 2024. https://doi.org/10.52202/078355-0013.
Der volle Inhalt der QuelleSaranya, V. S., Saikiran Mangali, K. Srinija, Galeiah Medabalimi, Meena Devi, R. Venkata Ramana N und Ajanthaa Lakkshmanan. „Image-Based Soil Health Analysis Using Deep Learning for Precision Agriculture“. In 2024 9th International Conference on Communication and Electronics Systems (ICCES), 1206–14. IEEE, 2024. https://doi.org/10.1109/icces63552.2024.10860230.
Der volle Inhalt der QuelleSharma, Deepak, M. Chitra Devi, Vivek Veeraiah, Manisha Kasar, Deepshikha Aggarwal und Tripti Sharma. „AI-Driven Precision Agriculture: Techniques for Monitoring Crop Health and Yield Optimization“. In 2024 4th International Conference on Technological Advancements in Computational Sciences (ICTACS), 1794–800. IEEE, 2024. https://doi.org/10.1109/ictacs62700.2024.10840749.
Der volle Inhalt der QuelleGaikwad, Shreeraj, Pratik Awatade, Yadnesh Sirdeshmukh und Chandan Prasad. „Precision Nutrition through Smart Wearable Technology Tailored Solutions for Personalized Health Enhancement“. In 2024 IEEE International Conference on Contemporary Computing and Communications (InC4), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/inc460750.2024.10649111.
Der volle Inhalt der QuelleKhatri, Parul, Archana Sharma und Payal. „An Optimized Machine Learning-Based Stroke Prediction: Enhancing Precision Medicine and Public Health“. In 2024 International Conference on Data Science and Network Security (ICDSNS), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/icdsns62112.2024.10690944.
Der volle Inhalt der QuelleMakhija, Aria. „Leveraging ResNet-50 for Precision Toxicity Classification in Plants: A Vision-Based Approach to Safeguard Public Health“. In 2024 E-Health and Bioengineering Conference (EHB), 1–6. IEEE, 2024. https://doi.org/10.1109/ehb64556.2024.10805656.
Der volle Inhalt der QuelleLi, Yan, und Yuejian Chen. „RM-YOLOv8-n: A Lightweight and High-precision Network for Rail Surface Defect Detection“. In 2024 Global Reliability and Prognostics and Health Management Conference (PHM-Beijing), 1–6. IEEE, 2024. https://doi.org/10.1109/phm-beijing63284.2024.10874487.
Der volle Inhalt der QuelleSunil, Tummapudi, Krishnagandhi Pachiappan, S. Senthilrajan, Y. Nagendar, Renato R. Maaliw und C. Pavin. „Integration of Convolutional Neural Networks for Real-Time Monitoring of Soil Health in Precision Agriculture“. In 2024 8th International Conference on Electronics, Communication and Aerospace Technology (ICECA), 1532–38. IEEE, 2024. https://doi.org/10.1109/iceca63461.2024.10800813.
Der volle Inhalt der QuelleWang, S. X., und J. Lee. „Magneto-nanosensors for precision medicine and precision health“. In 2017 IEEE International Magnetics Conference (INTERMAG). IEEE, 2017. http://dx.doi.org/10.1109/intmag.2017.8007612.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Precision health"
Bonnett, Michaela, Meaghan Kennedy, Odiraa Okala und Teri Garstka. Precision Public Health: Empowering Communities with Hyperlocal Data for Targeted Interventions and Improved Outcomes. Orange Sparkle Ball, Mai 2024. http://dx.doi.org/10.61152/sktq6431.
Der volle Inhalt der QuelleUpadhyaya, Shrini K., Abraham Shaviv, Abraham Katzir, Itzhak Shmulevich und David S. Slaughter. Development of A Real-Time, In-Situ Nitrate Sensor. United States Department of Agriculture, März 2002. http://dx.doi.org/10.32747/2002.7586537.bard.
Der volle Inhalt der QuelleScheffler, Bettina, Alexander Bremer und Christian Kopkow. Evidence-based guideline recommendations for physiotherapy in Parkinson's disease: a systematic review. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, Oktober 2022. http://dx.doi.org/10.37766/inplasy2022.10.0042.
Der volle Inhalt der QuelleHopmann, Christian, Christoph Zimmermann, Daniel C. Fritsche, Kirsten Bobzin, Hendrik Heinemann, Marvin Erck und Nicole Lohrey. Design of an injection mold with local placement of heating coatings for warpage compensation. Universidad de los Andes, Dezember 2024. https://doi.org/10.51573/andes.pps39.gs.im.1.
Der volle Inhalt der QuelleZhang, Yu, Chaoliang Sun, Hengxi Xu, Weiyang Shi, Luqi Cheng, Alain Dagher, Yuanchao Zhang und Tianzi Jiang. Connectivity-Based Subtyping of De Novo Parkinson Disease: Biomarkers, Medication Effects and Longitudinal Progression. Progress in Neurobiology, April 2024. http://dx.doi.org/10.60124/j.pneuro.2024.10.04.
Der volle Inhalt der QuelleHealth hazard evaluation report: HETA-84-415-1688, Precision Castparts Corporation, Portland, Oregon. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control, National Institute for Occupational Safety and Health, Mai 1986. http://dx.doi.org/10.26616/nioshheta844151688.
Der volle Inhalt der QuelleHealth hazard evaluation report: HETA-86-004-1740, Industrial Precision, Inc., Westfield, Massachusetts. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control, National Institute for Occupational Safety and Health, Oktober 1986. http://dx.doi.org/10.26616/nioshheta860041740.
Der volle Inhalt der QuelleHealth hazard evaluation report: HETA-98-0131-2704, U.S. Precision Lens Incorporated, Cincinnati, Ohio. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, August 1998. http://dx.doi.org/10.26616/nioshheta9801312704.
Der volle Inhalt der QuelleHealth hazard evaluation report: HETA-99-0085-2736, U.S. Precision Lens, Incorporated, Cincinnati, Ohio. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, April 1999. http://dx.doi.org/10.26616/nioshheta9900852736.
Der volle Inhalt der Quelle