Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Pr-Dns“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Pr-Dns" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Pr-Dns"
Tenneti, Sudheer, Mohammad Mehrabadi und Shankar Subramaniam. „Stochastic Lagrangian model for hydrodynamic acceleration of inertial particles in gas–solid suspensions“. Journal of Fluid Mechanics 788 (12.01.2016): 695–729. http://dx.doi.org/10.1017/jfm.2015.693.
Der volle Inhalt der QuelleKERR, ROBERT M., und JACKSON R. HERRING. „Prandtl number dependence of Nusselt number in direct numerical simulations“. Journal of Fluid Mechanics 419 (25.09.2000): 325–44. http://dx.doi.org/10.1017/s0022112000001464.
Der volle Inhalt der QuelleSong, Jiajun, Panxin Li, Lu Chen, Yuhang Zhao, Fengshi Tian und Benwen Li. „Scaling Law of Flow and Heat Transfer Characteristics in Turbulent Radiative Rayleigh-Bénard Convection of Optically Thick Media“. Energies 17, Nr. 19 (08.10.2024): 5009. http://dx.doi.org/10.3390/en17195009.
Der volle Inhalt der QuelleFu, Jianhong, Sheng Chen und Xiaochen Zhou. „Effect of heterogeneity on interphase heat transfer for gas–solid flow: A particle-resolved direct numerical simulation“. Physics of Fluids 34, Nr. 12 (Dezember 2022): 123317. http://dx.doi.org/10.1063/5.0130850.
Der volle Inhalt der QuelleCui, Haihang, Qi Chang, Jianhua Chen und Wei Ge. „PR-DNS verification of the stability condition in the EMMS model“. Chemical Engineering Journal 401 (Dezember 2020): 125999. http://dx.doi.org/10.1016/j.cej.2020.125999.
Der volle Inhalt der QuelleLuo, Heng, Fengbin Zhang, Haibo Huang, Yong Huang, Zhendong Liu, Jianxi Yan und Chicheng Yang. „The Effect of Ellipsoidal Particle Surface Roughness on Drag and Heat Transfer Coefficients Using Particle-Resolved Direct Numerical Simulation“. Processes 12, Nr. 11 (07.11.2024): 2473. http://dx.doi.org/10.3390/pr12112473.
Der volle Inhalt der QuelleChilamkurti, Yesaswi N., und Richard D. Gould. „CFD-DEM and PR-DNS studies of low-temperature densely packed beds“. International Journal of Heat and Mass Transfer 159 (Oktober 2020): 120056. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2020.120056.
Der volle Inhalt der QuelleWu, X., und P. A. Durbin. „Numerical Simulation of Heat Transfer in a Transitional Boundary Layer With Passing Wakes“. Journal of Heat Transfer 122, Nr. 2 (29.11.1999): 248–57. http://dx.doi.org/10.1115/1.521485.
Der volle Inhalt der QuelleTrane, D., M. Grespan und D. Angeli. „Comparison between DNS and RANS approaches for liquid metal flows around a square rod bundle“. Journal of Physics: Conference Series 2766, Nr. 1 (01.05.2024): 012009. http://dx.doi.org/10.1088/1742-6596/2766/1/012009.
Der volle Inhalt der QuelleLakehal, D., M. Fulgosi, G. Yadigaroglu und S. Banerjee. „Direct Numerical Simulation of Turbulent Heat Transfer Across a Mobile, Sheared Gas-Liquid Interface“. Journal of Heat Transfer 125, Nr. 6 (19.11.2003): 1129–39. http://dx.doi.org/10.1115/1.1621891.
Der volle Inhalt der QuelleDissertationen zum Thema "Pr-Dns"
Butaye, Edouard. „Modélisation et simulations résolues d'écoulement fluide-particules : du régime de Stokes aux lits fluidisés anisothermes“. Electronic Thesis or Diss., Perpignan, 2024. http://www.theses.fr/2024PERP0029.
Der volle Inhalt der QuelleSolar tower power plants harness concentrated solar flux to heat a fluid and generate electricity through a thermodynamic cycle that generates steam and drives a turbo-alternator. To increase thermal/electrical conversion efficiency, it is a required to raise the receiver outlet temperature to at least 800°C. An alternative to conventional fluids is to use air-fluidized particles to raise the working temperature and maximize parietal heat transfer. The solid particles used can withstand temperatures in excess of 1000°C without degrading their physical properties, and store heat efficiently. To meet these challenges, it is necessary to characterize the flow within the receiving tube, as well as the physical mechanisms of heat transfer in these configurations. This work focuses on the local description of anisothermal fluid-particle flows using particle-resolved direct numerical simulations (PR-DNS) with high-performance computing. Improvements are first implemented in the code to compute quantities of interest and optimize the numerical method. Next, several liquid-solid fluidized bed configurations are studied to extensively characterize flow dynamics. Parietal heat transfers are also computed as well as fluid-particle heat transfers. Gas-solid configurations are studied to validate the numerical simulation tool for modeling these flows. Finally, a new scale of resolution is proposed, referred to as Particle Resolved - Subgrid Corrected Simulation (PR-SCS). This scale enables hydrodynamic forces to be accurately modeled despite the coarse resolution
Konferenzberichte zum Thema "Pr-Dns"
Bergant, R., und I. Tiselj. „The Smallest Temperature Scales in a Turbulent Channel Flow at High Prandtl Numbers“. In ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems. ASMEDC, 2005. http://dx.doi.org/10.1115/ht2005-72495.
Der volle Inhalt der QuelleBergant, Robert, Iztok Tiselj und Gad Hetsroni. „Near-Wall Turbulent Heat Transfer at Prandtl Numbers 1 to 54“. In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32006.
Der volle Inhalt der QuelleTiselj, Iztok, und Luka Sˇtrubelj. „Passive Scalar Turbulent Channel Flow at Pr=25: DNS-LES Approach“. In ASME/JSME 2007 5th Joint Fluids Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/fedsm2007-37325.
Der volle Inhalt der QuelleLai, Jonathan K., Elia Merzari, Yassin A. Hassan und Aleksandr Obabko. „Validation and Development of DNS Database for Low Prandtl Numbers in Rod Bundle“. In ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/ajkfluids2019-5036.
Der volle Inhalt der QuelleBergant, Robert, Iztok Tiselj und Gad Hetsroni. „Resolution Requirements for DNS of Turbulent Heat Transfer Near the Heated Wall at Prandtl Number 5.4“. In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/htd-24129.
Der volle Inhalt der QuelleBergant, R., und I. Tiselj. „Numerical Simulations of Turbulent Flume Heat Transfer at Pr = 5.4: Impact of the Smallest Temperature Scales“. In ASME 2005 Fluids Engineering Division Summer Meeting. ASMEDC, 2005. http://dx.doi.org/10.1115/fedsm2005-77144.
Der volle Inhalt der QuelleJahani, B., M. MacDonald und Stuart E. Norris. „Modelling turbulent stratified open channel flow for Pr=7 using multiscale DNS“. In 10th International Symposium on Turbulence, Heat and Mass Transfer, THMT-23, Rome, Italy, 11-15 September 2023. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/ichmt.thmt-23.1260.
Der volle Inhalt der QuelleJahani, B., M. MacDonald und Stuart E. Norris. „Modelling turbulent stratified open channel flow for Pr=7 using multiscale DNS“. In 10th International Symposium on Turbulence, Heat and Mass Transfer, THMT-23, Rome, Italy, 11-15 September 2023. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/thmt-23.1260.
Der volle Inhalt der QuelleOtic´, I., und G. Gro¨tzbach. „Direct Numerical Simulation and RANS Modeling of Turbulent Natural Convection for Low Prandtl Number Fluids“. In ASME/JSME 2004 Pressure Vessels and Piping Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/pvp2004-3132.
Der volle Inhalt der QuelleBhushan, S., M. Elmellouki, W. D. Jock, D. K. Walters, J. K. Lai, Y. A. Hassan, A. Obabko und E. Merzari. „Numerical Investigation of Flow and Heat Transfer Characteristics for Attached and Separated Low-Pr Flows“. In ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/ajkfluids2019-5273.
Der volle Inhalt der Quelle