Dissertationen zum Thema „Power grid control room“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Power grid control room" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Zhang, Weiyi. „Control of grid connected power converters with grid support functionalities“. Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/456312.
Der volle Inhalt der QuelleLos convertidores de potencia conectados a la red actúan comúnmente como interfaz entre plantas de generación basadas en energía renovable y la red eléctrica, permitiendo así el procesado de energía eólica y fotovoltaica y su inyección a red. El control de estos convertidores conectados a la red ha sido objeto de estudio en las últimas décadas, ya que su comportamiento y prestaciones influye de forma determinante tanto en la calidad de la red eléctrica, así como en el cumplimiento de los requisitos de conexión a la red fijados por los códigos de red. Junto con la expansión de las plantas de generación de energía renovable, su impacto en el sistema eléctrico ha crecido también, lo cual ha hecho que se lleven a cabo muchos trabajos de investigación orientados a armonizar la penetración de renovables con la estabilidad de la red. Con los sistemas de control actuales la capacidad de regulación de la red disminuye tanto como la proporción de la generación renovable aumenta. En las redes eléctricas del futuro, se espera que los convertidores de potencia, que actúan como interfaz, exploten sus posibilidades de cómputo y control permitiendo mejorar la interacción de la generación renovable con la red. En este contexto los controles de tipo “droop control”, los cuales son ampliamente utilizados en sistemas de generación tradicionales, se pueden aplicar a los convertidores conectados a red para habilitar funciones de soporte de red, ya que estos contribuyen al control de tensión y frecuencia primaria ajustando el intercambio de potencia activo y reactiva de forma proporcional a la desviación de la frecuencia y magnitud de la tensión en el punto de conexión. En el caso de regulación de frecuencia, y para que este sea bidireccional, el convertidor puede interactuar con la red con la ayuda de sistemas de almacenamiento de energía. Sin embargo, la inclusión del “droop control” no conlleva una solución global. Incluso si se ajusta de forma óptima y se dispone de reserva de energía, aún hay cuestiones como la respuesta inercial que no se pueden dar con este tipo de control. La generación en los sistemas tradicionales se lleva a cabo principalmente por generadores síncronos. Comparados con estos, los convertidores conectados a la red difieren principalmente en la falta de la característica electromecánica. En consecuencia, la estática y la dinámica de las unidades de generación de energía renovable son diferentes en comparación con los generadores síncronos. La dinámica de estos convertidores es altamente dependiente de los sistemas de sincronización (PLL), cuyo comportamiento se degrada en condiciones de red adversas o distorsionadas. Además, el control de potencia normalmente depende control de potencia instantáneo. Debido a las diferentes dinámicas, la inercia total en la red no aumenta junto con la integración de las energías renovables. Sin embargo, los códigos de red han incluido requerimientos tales como “inercia sintética" en los requisitos. Otras deficiencias del control del convertidor convencional incluyen el rendimiento inferior bajo condiciones de avería de red, en conexión de red débil y conexión de red de relación X / R baja. Esta tesis doctoral estudia y valida el control de los convertidores conectados a la red con funcionalidades de soporte de red. El objetivo general del trabajo es mejorar las características de interacción de la red de las plantas de generación de energía renovable mediante la especificación de los convertidores conectados a la red con características de la máquina síncrona emulada y mejorada. La tesis ha aportado contribuciones o ha mostrado originalidades en los siguientes aspectos: Un enfoque de ajuste de bucle de control de corriente interno generalizado; Diseño detallado y validación de la admisión virtual para convertidores conectados a la red; Diseño detallado y validación del circuito de control de potencia para la emulación de inercia y amortiguación.
Roos, Pontus. „A Comparison of Grid-Forming and Grid-Following Control of VSCs“. Thesis, Uppsala universitet, Institutionen för elektroteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-413872.
Der volle Inhalt der QuelleWu, Yifan. „Grid-forming Inverter Control for Improving Power System Stability“. Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/27492.
Der volle Inhalt der QuelleAlfares, Abdulgafor Mohammed. „Analysis of power converter's control techniques in Grid-Tie and AC Micro/Smart Grid“. Thesis, Marquette University, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=1553890.
Der volle Inhalt der QuellePower converters have an outstanding potential in micro and smart grid applications that require flexible and fast power control as well as rigid voltage regulation at the point of common coupling. Power converters are required to properly operate under several modes of operation such as grid-tie and micro-grid modes of operations. In addition, the control system should be designed to enable proper load sharing between several units.
Several control techniques have been proposed in the literature to address most of the control requirements of the power converters under different operating modes mentioned above. However, references found in the literatures are usually centered on the analysis of the system under only one mode of operation and using a single control strategy. Comprehensive study that combines an in depth analysis of the power converters control under several modes are very scarce in the literature.
In this thesis, a detailed survey and analysis of power converter control techniques in Grid-Tie and AC Micro/Smart Grid applications are introduced. This analysis is based on detailed nonlinear time domain simulations as well as average and small signal models for system stability assessment and performance evaluation.
Das, Debrup. „Dynamic control of grid power flow using controllable network transformers“. Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/43739.
Der volle Inhalt der QuelleAminou, Moussavou Anges Akim. „Modelling and analysis of microgrid control techniques for grid stabilisation“. Thesis, Cape Peninsula University of Technology, 2014. http://hdl.handle.net/20.500.11838/1184.
Der volle Inhalt der QuelleIn recent times, renewable energy-based distributed generation (DG) has captivated the industrial sector and on a global scale this has become a leading research area. Distributed generation using wind, solar energy or biomass as a source of energy can produce electricity on a small scale. Therefore, there is a strong focus on using renewable energy as a safe alternative source of energy, especially because it can in future play a dominant role in the world’s energy production and help to tackle the increase of global warming caused by fossil energy. However, a major problem facing renewable energies is that they are highly dependent on weather conditions. Since the power generated by DG, as well as consumption, depends on the weather conditions, irregularity of production and consumption leads to frequency and voltage fluctuations, and it can become difficult to determine and monitor consumer usage at any given time. Distributed generation can then be subjected to discrepancies in consumer usage and this can lead to severe overloading. As a result, microgrids powered by DG, operating in a single, stand-alone controllable system mode, face new challenges in terms of balancing a cluster of loads. Balancing a cluster of loads by making sure at all times that the entire system operates without overloading, is an essential requirement for the proper operation of a power system. The microgrid load considered in this project is the sum of sensitive and non-sensitive loads, respectively 5 kW and 100 kW, which constitute load requirement of one village; this total load required by a number of villages is called a cluster load. Depending on the input power generated by a DG-based photovoltaic (PV) system, these loads can be controlled using a logic control switch (LCS). When the power produced is less than the minimum load required by a component of a cluster, overloading occurs. The purpose of using an LCS is to ensure that a stable system is maintained under various loads and resource conditions. An LCS is used to continuously monitor and adjust load through circuit breakers. It is a good alternative to load balancing for a cluster of villages in rural area where a microgrid is operating in stand-alone mode. The focus of this research is to design a photovoltaic system with a maximum capacity of 1 MW providing power to a cluster of rural villages, and operating in stand-alone mode, and then to apply different control techniques (droop control, dq0 reference frame + proportional integral (PI) controller, and PI controller alone) at the inverter terminal of the PV system, in order to evaluate the stability of the output voltage. Another goal of the research is to develop an energy management system (EMS) algorithm to support the PV system in reducing loads. Therefore, a iii stable system under various load and resource conditions, as well as suitable control mechanisms are required to model a PV system. There is a need for the modelling of a PV array using a physical modelling block in MATLAB (SIMULINK) software. The state flow provided by SIMULINK is used in this project to develop an algorithm for load balancing. The state flow gives possibilities of modelling complex algorithms by combining graphical and tabular representations to create sequential decision logic, derived from state transition diagrams and tables, flow charts and truth tables. Furthermore, the design of a microgrid using photovoltaic DG and an energy management system, has been developed. The present work mainly consists of a stand-alone microgrid operation, where the power generated must be equal to the load power. In addition, different control methods, consisting of a dq0 reference frame + PI controller, are analysed at the invertor terminal. Subsequently an LCS algorithm is developed; this is required to maintain the system within certain limits and prevents overloading. LCS algorithms are based on a flowchart and allow switching automatically selected loads, depending on the power (solar radiation) available. In addition, a flow chart provides an easy way of using a graphical transition state and state chart to establish a set of rules for the system. The simulation results show that both droop control and a dq0 reference frame + PI controller are much better than a PI controller alone; these results also compared well with similar studies found in the literature. Also, these results are further improved with an EMS in order to maintain the output voltage of the microgrid, by switching on and off certain loads depending on the input power. The modelling of the microgrid using DG, based on photovoltaic systems with a maximum capacity of 1 MW, supports and improves the PV system by reducing loads. Moreover, droop control, and dq0 transformation + PI control present a better result than PI controller alone.
Ghias, Nezhad Omran Nima. „Power grid planning for vehicular demand: forecasting and decentralized control“. IEEE Transactions on Smart Grid, 2014. http://hdl.handle.net/1993/23891.
Der volle Inhalt der QuelleOctober 2014
Su, Po-An (Po-An Leo). „Demonstration of HVAC chiller control for power grid frequency regulation“. Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/99306.
Der volle Inhalt der QuelleCataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 74-77).
Secondary frequency regulation is a necessary electric grid ancillary service that balances electric power system supply and demand on short time intervals of seconds to minutes. Commercial HVAC chillers may be well positioned to provide secondary frequency regulation as a demand side resource. Commercial 200 ton (703 kWth) chillers serving two buildings in the Boston area are used to experimentally develop a practical closed-loop controller that modifies chiller power demand to provide secondary frequency regulation. In the first setup, a physical controller is connected directly to the chiller and adjusts power through chilled water setpoint. In the second setup, both the chiller and air handling units are controlled through the BAS. Demonstrations using standard electric system operator test routines show the chiller power response to exceed qualification requirements while providing up to +/-25% of chiller nameplate power in secondary frequency regulation capability. The controller is further demonstrated to provide secondary frequency regulation continuously for several hours longer than the standard test routines, during which building cooling load changes significantly. Analysis of results indicate minimum power and variable COP as two factors that could be incorporated into future models to more accurately reflect observed chiller transient behaviour and predict performance. BAS communication delays, ramp rate limits, and compressor cycling are additional factors that can have significant negative impacts on controller performance. Extrapolation of experiment results to higher-level analysis indicates that chillers can contribute to the secondary frequency regulation requirements at the grid level in aggregate, although potential varies greatly depending on climate and building type. There is more potential in the south, where 21% of secondary frequency regulation requirements might be met with chillers; the contribution of chillers in colder climates is minimal. Short-term power balance to achieve stability is essential for the operation of the modern electrical power system. Providing stability through modified control of existing HVAC chillers in commercial buildings is a technologically feasible alternative to existing solutions and can make a meaningful contribution to the electrical grid.
by Po-An (Leo) Su.
S.M. in Building Technology
Jupin, Samuel. „Advanced Control of Multilevel Power Converters for Weak Grid Applications“. Thesis, Bordeaux, 2020. http://www.theses.fr/2020BORD0210.
Der volle Inhalt der QuelleWith the progressive rise of the micro-grids incorporating renewable energy sources, a new electricity distribution paradigm is emerging. These new architectures interface uncontrolled consumers with intermittent energy sources, therefore imposing more stress on the conversion, storage and management of the energy.Power converters are adapting accordingly, in particular, with the development of multi-level converters, which allow higher power rates and better power quality than their predecessors with similar components, but whose control is becoming increasingly complex.Due to their hybrid nature, the control of power converters is traditionally split into two parts: on the one side, the continuous objectives related to the main interfacing function of the power converters, and, on the other side, the driving of their quantized power switches, known as the modulation strategy.In this context, the growing demands in efficiency, reliability, versatility and performance require a high level of intelligence of the complete control structure. To meet these requirements, the objectives of this research work are to address both the interfacing objectives and the inner driving of the converter into a single controller. This decision implies incorporating the non-linearity of power converters into the controller, equivalent to suppressing the traditional modulation block. Modulation is the traditional solution to linearize the inner operation of the converters. The Model Predictive Control (MPC) approach was chosen to handle the non-linearity and the diversity of control objectives that accompany power converters.The developed control algorithm combines graph theory, with Dijkstra, A* and other algorithms, with a special state-space model designed for switching systems to form a powerful universal tool capable of simultaneously manipulating the discrete and continuous nature of the converter and its environment. Switched state-space models are studied, leading to interesting results on stability and controllability concerning their application on power converters.The obtained controller is then tested in simulation, with various case studies: grid-connected and standalone inverter, rectifier and bidirectional operation. These situations are studied for three common multi-level topologies: Neutral Point-Clamped, Flying Capacitor and Cascaded H-Bridge. The exact same MPC structure is used for each and every one of the case studies, with adaptations of its internal behavior. This behavior is agglomerated in two functions: the prediction, containing the model of the converter, and the cost function, which translates the control requirements into the optimal problem solved by the algorithm. Changing the topology implies adjusting the model, without impacting the cost function, while modifying this function is sufficient to adapt to the different applications.The results show that the controller manages to directly drive the power switches according to the application, demonstrating a large variety of considerations and objectives. The overall performance of this unique structure is comparable to that of the multiple structures used for each of the studied cases, with the notable exception of rectifier operation mode, where the speed and range of possibilities are particularly interesting.In conclusion, the developed controller manages miscellaneous applications, topologies, objectives and constraints. While the traditional linear control structures have to change, often deeply, for different operation modes and control requirements, such modifications do not affect the control architecture of the designed MPC controller. This shows the versatility of the proposed solution and its universality, further demonstrated by its ability to adapt to different power converters without modifications. Finally, the complexity of the modulation is fully included in the structure, offering simplicity and flexibility to the control design
McAndrew, Thomas Charles. „Weighted Networks: Applications from Power grid construction to crowd control“. ScholarWorks @ UVM, 2017. http://scholarworks.uvm.edu/graddis/668.
Der volle Inhalt der QuelleGautam, Samir. „Synchronization and Control of Grid Connected Single-Phase Power Converter“. Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/25807.
Der volle Inhalt der QuelleJain, Chinmay. „Design, control and implementation of grid tied solar energy conversion systems“. Thesis, IIT Delhi, 2017. http://localhost:8080/xmlui/handle/12345678/7058.
Der volle Inhalt der QuelleAthanasius, Germane Information Technology & Electrical Engineering Australian Defence Force Academy UNSW. „Robust decentralised output feedback control of interconnected grid system“. Awarded by:University of New South Wales - Australian Defence Force Academy, 2008. http://handle.unsw.edu.au/1959.4/39591.
Der volle Inhalt der QuelleGao, Shuang, und 高爽. „Design, analysis and control of vehicle-to-grid services“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/197100.
Der volle Inhalt der Quellepublished_or_final_version
Electrical and Electronic Engineering
Doctoral
Doctor of Philosophy
Villemin, Maxime. „Alarm handling in the control room of a Nuclear Power Plant“. Thesis, KTH, Fysik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-92111.
Der volle Inhalt der QuelleLuo, Gang. „Development of a Digital Desk for Power Plant Control Room Operators“. Thesis, Linköpings universitet, Institutionen för datavetenskap, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-62353.
Der volle Inhalt der QuelleAlshogeathri, Ali Mofleh Ali. „Vehicle-to-Grid (V2G) integration with the power grid using a fuzzy logic controller“. Thesis, Kansas State University, 2015. http://hdl.handle.net/2097/20606.
Der volle Inhalt der QuelleDepartment of Electrical and Computer Engineering
Shelli K. Starrett
This thesis introduces a Vehicle to Grid (V2G) system which coordinates the charging, and discharging among the Electric Vehicles (EVs) and two-test systems, to help with peak power shaving and voltage stability of the system. Allowing EVs to charge and discharge without any control may lead to voltage variations and disturbance to the grid, but if the charging and discharging of the EVs is done in a smart manner, they can help the power network. In this thesis, fuzzy logic controllers (FLC) are used to control the flow of power between the grid and the electric vehicles. The presented work in this thesis mainly focuses on the control architecture for a V2G station that allows for using EVs batteries to help the grid’s voltage stability. The designed controllers sustain the node voltage, and thus also achieve peak shaving. The proposed architectures are tested on 16 -generator and 6-generator test systems to examine the effectiveness of the proposed designs. Five fuzzy logic schemes are tested to illustrate the V2G system’s ability to influence system voltage stability. The major contributions of this thesis are as follows: • FLC based control tool for V2G station present at a weak bus in the system. • Investigate the effect of the station location and voltage sensitivity. • Comparison of chargers providing real power versus reactive power. • Simulation of controller and system interactions in a daily load curve cycle. Keywords: State of Charge (SOC), Electric Vehicle (EV), Fuzzy Logic Controller (FLC), Vehicle to grid (V2G), and Power System Voltage Stability.
Arif, Bilal. „Real-time grid parameter estimation methods using model based predictive control for grid-connected converters“. Thesis, University of Nottingham, 2016. http://eprints.nottingham.ac.uk/31963/.
Der volle Inhalt der QuelleWang, Zhongkui. „Reactive Power Control and Optimization of Large Scale Grid Connected Photovoltaic Systems in the Smart Grid“. The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1388764166.
Der volle Inhalt der QuelleHannisdal, Erik Lundegaard. „Optimal Voltage Control of the Southern Norwegian Power Grid : Mixed Integer Nonlinear Programming (MINLP) for Control and Optimization of the High Voltage Southern Norwegian Power Grid“. Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for teknisk kybernetikk, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-13180.
Der volle Inhalt der QuelleMataifa, Haltor. „Modeling and control of a dual-mode grid-integrated renewable energy system“. Thesis, Cape Peninsula University of Technology, 2015. http://hdl.handle.net/20.500.11838/2190.
Der volle Inhalt der QuelleFrom the electric power generation perspective, the last three decades have been characterized by sustained growth in the amount of Distributed Power Generation (DPG) systems integrated into the electric grid. This trend is anticipated to continue, especially in light of the widespread acceptance of the many benefits envisaged in the increase of renewable-based power generation. The potential for grid-integrated DPG systems to significantly contribute to electric power supply reliability has consistently attracted extensive research in recent times, although concerns continue to be raised over their adverse impact on the normal grid operation at high penetration levels. These concerns largely stem from the limited controllability of most DPG systems, which tend to exhibit large output impedance variation, and non-deterministic power output characteristics. There has therefore also been a growing need to develop effective control strategies that can enhance the overall impact of the DPG systems on the grid operation, thus improving their synergistic properties, and probably also enabling an even higher penetration level into the utility grid. In line with this identified need, this thesis discusses the modeling and controller design for an inverter-based DPG system with the capability to effectively operate both in grid-connected and autonomous (i.e. independent of the utility grid) operational modes. The dual-mode operation of the DPG is made possible by incorporating into the inverter interface control scheme the means to ensure seamless transition of the DPG between the grid-connected and autonomous modes of operation. The intention is to have a grid-integrated inverter-based DPG system whose operation approximates that of an online Uninterruptible Power Supply (UPS) system, in that it is able to sustain power supply to the local load in the absence of the grid supply, which would be desirable for critical loads, for which the level of power supply reliability guaranteed by the grid often falls short of the requirements. The work developed in this thesis considers three of the aspects associated with grid-integrated DPG systems that are equipped with autonomous-mode operation capability.
Johal, Harjeet. „Distributed series reactance a new approach to realize grid power flow control /“. Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26713.
Der volle Inhalt der QuelleCommittee Chair: Divan, Deepakraj M.; Committee Member: Begovic, Miroslav M.; Committee Member: Brown, Marilyn; Committee Member: Harley, Ronald G.; Committee Member: Wolf, Wayne H. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Kulka, Arkadiusz. „Sensorless Digital Control of Grid Connected Three Phase Converters for Renewable Sources“. Doctoral thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for elkraftteknikk, 2008. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-5578.
Der volle Inhalt der QuelleBadran, Ahmad. „Integrating Wind Power into The Electric Grid : Predictive Current Control Implementation“. Thesis, Linnéuniversitetet, Institutionen för fysik och elektroteknik (IFE), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-99640.
Der volle Inhalt der QuelleSastry, Jyoti. „Direct AC control of grid assets“. Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/41109.
Der volle Inhalt der QuelleLiu, Kai, und 劉愷. „Optimal dispatch and management for smart power grid“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B46336680.
Der volle Inhalt der QuelleKim, Rae-Young. „Improved renewable energy power system using a generalized control structure for two-stage power converters“. Diss., Virginia Tech, 2009. http://hdl.handle.net/10919/28932.
Der volle Inhalt der QuellePh. D.
Cavraro, Guido. „Modeling, Control and Identification of a Smart Grid“. Doctoral thesis, Università degli studi di Padova, 2015. http://hdl.handle.net/11577/3424251.
Der volle Inhalt der QuelleStiamo vivendo un cambiamento epocale dello scenario di produzione e distribuzione dell’energia. L’incremento della richiesta di energia, il fatto che molte Paesi dipendano energeticamente da poche nazioni ricche di giacimenti di gas o petroliferi e, inoltre, il cambiamento climatico e l’inquinamento costituiscono la ragione principale del recente sviluppo e diffusione di tecnologie per la generazione di energia da fonte rinnovabili. Alcuni esempi ne sono i pannelli fotovoltaici oppure generatori eolici, geotermici, idroelettrico o dalle biomasse. Essi sono generatori di piccole dimensione, o micro-generatori, visto che le loro dimensioni e la quantità di energia che producono sono decisamente inferiori a quelle dei grandi, classici impianti di generazioni. Queste fonti distribuite di energia (DERs) si trovano vicino agli utilizzatori, nella rete di distribuzione. Inoltre, essi sono collegati alla rete attraverso interfacce elettroniche, gli inverter, che ci potrebbero permettere di controllare la quantità di potenza che essi iniettano. Questa tesi si concentra sullo studio di alcuni aspetti cruciali di di questo nuovo scenario energtico, e è composta da quattro parti principali, ciascuna delle quali tratta un aspetto diverso. Esse sono: 1. Modellistica: qui si richiamano i modelli classici e un recente modello linearizzato, che sarà utile per la progettazione e l’analisi degli algoritmi proposti, dei sistemi di potenza. 2. Ottimizzazione dei flussi di potenza reattiva: in questa parte si richiamano i classici e i più recenti algoritmi di gestione della potenza reattiva. In particolare ci si concentra su quelli che ne ottimizzano i flussi, cioè che si focalizzano sul problema di decidere quanta potenza reattiva ciascun micro-generatore deve iniettare se si vogliono ottenere delle prestazioni “ottime”. Come indice di ottimalità è stata scelta la miniizzazione delle perdite sulle linee. Infine viene progettato e analizzato il nostro algoritmo di ottimizzazione, fornendo dimostrazione formale della sua convergenza. 3. Ottimizzazione dei flussi di potenza: lo scopo di questo problema è quello di trovare una configurazione che ottimizza una funzione costo (di solito il costo di generazione) e che soddisfa alcuni vincoli operativi. Dopo aver richiamato i più famosi algoritmi che risolvono questo problema, ne vengono proposti due. Questo perchè vi sono principalmente due scenari. Il primo è connesso al punto di “vista dell’utility”, dove il costo tiene conto sia dell’effettivo costo di generazione dell’energia (che arriva dai grandi impianti di generazione, quali centrali nucleari o idroelettriche) e della remunerazione che deve essere data ai proprietari delle DERs per l’energia che producono. In questo caso , l’utility impone una procedura per calcolare la potenza da iniettare per minimizzare il costo totale. Il primo algoritmo rientra in questo scenario. Il secondo è connesso al punto di “vista del proprietario di DERs”. Poichè questi viene pagato proporzionalmente alla quantità di energia che inietta, vorrebbe massimizzare la potenza che inietta, soddisfando comunque alcuni vincoli operativi. Ne viene fuori un conflitto fra i diversi proprietari. Una trattazione di questo scenario è data dal secondo algoritmo. 4. Controllo degli interruttori per l’identificazione della topologia: in questa parte, dopo una revisione della letteratura, viene proposto un algoritmo per l’identificazione delle azioni degli interruttori nella rete. Queste modificano la topologia della rete elettrica, la cui conoscenza è fondamentale per il controllo, la supervisione e la stima. Questo algoritmo analizza le variazioni dei profili delle tensioni fasoriali e cerca di riconoscere in esse una sorta di firma della particolare azione degli interruttori.
Spaizman, Daniel. „Grid-Scale Energy Storage: A Proposed Control Algorithm for Sodium Sulfur Batteries“. DigitalCommons@CalPoly, 2014. https://digitalcommons.calpoly.edu/theses/1279.
Der volle Inhalt der QuelleTarisciotti, Luca. „Model predictive control for advanced multilevel power converters in smart-grid applications“. Thesis, University of Nottingham, 2014. http://eprints.nottingham.ac.uk/27742/.
Der volle Inhalt der QuelleRoslan, Nurul Fazlin. „Control strategy of grid connected power converter based on virtual flux approach“. Doctoral thesis, Universitat Politècnica de Catalunya, 2021. http://hdl.handle.net/10803/673388.
Der volle Inhalt der QuelleSistemes d'energia elèctrica
Omar, Moien. „Power Converters and Control for Grid Connected Microgrids under Unbalanced Operating Conditions“. Doctoral thesis, Università di Catania, 2015. http://hdl.handle.net/10761/3728.
Der volle Inhalt der QuelleAlves, Montanari Allan. „Enhanced instantaneous power theory for control of grid connected voltage sourced converters under unbalanced conditions“. IEEE Transactions on Power Electronics, 2017. http://hdl.handle.net/1993/32184.
Der volle Inhalt der QuelleMay 2017
Geury, Thomas. „Smart matrix converter-based grid-connected photovoltaic system for mitigating current and voltage-related power quality issues on the low-voltage grid“. Doctoral thesis, Universite Libre de Bruxelles, 2017. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/243967.
Der volle Inhalt der QuelleDoctorat en Sciences de l'ingénieur et technologie
info:eu-repo/semantics/nonPublished
Gao, Siyu. „Grid synchronisation of VSC-HVDC system“. Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/grid-synchronisation-of-vschvdc-system(6de14261-b0cd-4a82-bfb9-2ccaae012c4e).html.
Der volle Inhalt der QuelleEkström, Ellen. „Using Shared Priorities to Support Training of Nuclear Power Plant Control Room Crews“. Thesis, Linköpings universitet, Institutionen för datavetenskap, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-120076.
Der volle Inhalt der QuelleTurner, Robert Walter. „Improving the performance of digitally-controlled high power grid-connected inverters“. Thesis, University of Canterbury. Electrical and Computer Engineering, 2013. http://hdl.handle.net/10092/7614.
Der volle Inhalt der QuelleSiniscalchi, Minna Sara. „Advanced wind farm control strategies for enhancing grid support“. Doctoral thesis, TDX (Tesis Doctorals en Xarxa), 2019. http://hdl.handle.net/10803/669244.
Der volle Inhalt der QuelleHoy en día, existe una significativa preocupación entre los Operadores de Sistemas de Transmisión sobre la cresciente penetración de le energía eólica y la tendiente eliminación de las centrales eléctricas convencionales que implica la disminución de la inercia del sistema eléctrico. Operando adecuadamente los parques eólicos, la generación eólica puede mejorar la estabilidad de la red eléctrica y garantizar la seguridad y un continuo suministro de energía. Esta tesis doctoral propone nuevas estrategias para diseñar controladores basados en optimización dinámica para parques eólicos y mejorar la participación de los parques eólicos en el soporte de la red eléctrica. En primer lugar, esta tesis doctoral presenta los enfoques clásicos para el control de parques y turbinas eólicas y cómo los conceptos de control existentes pueden ser explotados para hacer frente a los nuevos desafíos que se esperan de los parques eólicos. Esta tesis doctoral asigna un interés especial a cómo formular la función objetivo de que la reserva de potencia sea maximizada, para ayudar por el suporte de frequencia, y al mismo tiempo seguir la potencia demandada por la red. Sin embargo, el impacto de la estela de viento generada por una turbina sobre otras turbinas necesita ser minimizado para mejorar la reserva de potencia. Por lo tanto, a lo largo de esta tesis se proponen estrategias de control centralizado para parques eólicos enfocadas en distribuir óptimamente la energía entre las turbinas para que el impacto negativo de la estela en la reserva de potencia total se reduzca. Se discuten dos técnicas de control para proporcionar los objetivos de control mencionados anteriormente. Un algoritmo de control óptimo para encontrar la mejor distribución de potencia entre las turbinas en el parque mientras se resuelve un problema iterativo de programación lineal. En segundo lugar, se utiliza la técnica de control predictivo basada en modelo para resolver un problema de control multi-objetivo que también podría incluir, junto con la maximización de reserva de potencia, otros objetivos de control, tales como la minimización de las perdidas eléctricas en los cables de la red de interconexión entre turbinas y un controlador/supervisor. Además, la investigación realizada resalta la capacidad de las estrategias de control propuestas en esta tesis para proporcionar mayor reserva de potencia respecto a los conceptos comúnmente usados para distribuir la potencia total del parque eólico. La idea principal detrás del diseño de una estrategia de control de parques eólico es de encontrar una solución óptima dentro de un cálculo computacional relativamente bajo. Aunque los controladores centralizados propuestos en esta tesis reaccionan rápidamente a los cambios en la potencia de referencia enviada desde el controlador, algunos problemas pueden ocurrir cuando se consideran parques eólicos de gran escala debido a los retrasos existentes por el viento entre turbinas. Bajo estas circunstancias, la producción de energía de cada turbina está altamente acoplada con la propagación de la estela y, por ende, con las condiciones de funcionamiento de las otras turbinas. Esta tesis doctoral propone un esquema de control de parques eólicos no centralizados basado en una estrategia de partición para dividir el parque eólico en sub-conjuntos independientes de turbinas. Con la estrategia de control propuesta, el tiempo de cálculo se reduce adecuadamente en comparación con la estrategia de control centralizado mientras que el rendimiento en la distribución óptima de potencia es ligeramente afectado. El rendimiento de todas las estrategias de control propuestas en esta tesis se prueba con un simulador de parque eólico que modela el comportamiento dinámico del efecto de estela mediante el uso de un conocido y consolidado modelo dinámico de estela y, para un análisis más realista, algunas simulaciones se realizan con software avanzado basado en la técnica de Large Eddy Simulation.
Masood, Tariq. „Improvement of voltage and power flow control in the GCC power grid by using coordinated FACTS devices“. Thesis, University of Bath, 2013. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.589638.
Der volle Inhalt der QuelleRaza, Muhammad. „Offshore grid control of voltage source converters for integrating offshore wind power plants“. Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/461835.
Der volle Inhalt der QuelleLas redes eléctricas marítimas en el Norte y en el Mar Báltico pueden ayudar a Europa a conseguir los objetivos para 2020 y 2030 de combatir el cambio climático. La formación de la red eléctrica marítima requiere la interconexión entre varios parques eólicos marinos con múltiples redes eléctricas en tierra. Un convertidor de la fuente de voltaje basado en el sistema de transmisión de corriente directa de alto voltaje es el apropiado para poder operar una red marítima integrada. Las redes eléctricas marítimas aumentarán el comercio entre países, proveerán una mejor infraestructura para la integración de los parques eólicos marinos y mejorarán el mercado energético. Esta tesis presenta el diseño del sistema de control del convertidor de las fuentes de voltaje para operar una red eléctrica marítima. La red eléctrica marítima se construye gradualmente, empezando por la integración de un solo parque eólico marino hasta la combinación de redes eléctricas marítima en CA y CD, esto para mejorar el análisis del sistema de potencia asociado con las redes, tales como el flujo de potencia en estado estacionario, el comportamiento dinámico, la estabilidad de la red y la respuesta en corto circuito. La investigación presenta el método de determinación de parámetros de control con respecto a la distribución de potencia y los requerimientos de estabilidad de la red. La investigación presenta los esquemas de frecuencia y la caída de voltaje para mejorar el método de formación de red del convertidor de la fuente de voltaje y operar en paralelo con la red eléctrica marítima. Se propone un algoritmo de múltiples objetivos para lograr un flujo de potencia óptimo, determinar las ganancias en la frecuencia y en la caída de voltaje y así lograr controlar la distribución de potencia activa y reactiva entre los convertidores. Después, se analiza el impacto de estas ganancias en la dinámica y estabilidad de la red. El estudio nos muestra que el desempeño del convertidor influencia la estabilidad de la red eléctrica marítima en CA en conjunto con el lazo de control de la caída. Así mismo, se presentan los esquemas de control coordinado de frecuencia y corto circuito, aplicados para las unidades de generación eólica marítima y los convertidores en red. El esquema de control coordinado de frecuencia reduce la potencia eólica hasta la máxima capacidad de exportación disponible después de las perturbaciones en la red eléctrica marítima. Se sugiere que la coordinación del control debe de tener control sobre la frecuencia y el sobre voltaje para mejorar la respuesta en transitorios. Por último, se presenta el control del convertidor de las multiterminales en la red CD y su integración con la red eléctrica marítima en CA. La investigación demuestra la habilidad que posee el convertidor para controlar la distribución de potencia, junto con el sistema de transmisión, mientras se asegura la estabilidad de la red. Los hallazgos de esta investigación pueden ser aplicados para obtener información y recomendaciones en los futuros proyectos de parques eólicos.
Luu, Hong Viet. „Grid friendly digital control of active front-end converters minimizing of power interferences“. Dresden TUD-Press, 2006. http://deposit.ddb.de/cgi-bin/dokserv?id=2825500&prov=M&dok_var=1&dok_ext=htm.
Der volle Inhalt der QuelleFulhu, Miraz Mohamed. „Active human intelligence for smart grid (AHISG) : feedback control of remote power systems“. Thesis, University of Canterbury. Mechanical Engineering, 2014. http://hdl.handle.net/10092/9582.
Der volle Inhalt der QuelleZhou, Huafeng, und 周華鋒. „Design of grid service-based power system control centers for future electricity systems“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B40687429.
Der volle Inhalt der QuelleOmole, Adedamola. „Voltage Stability Impact of Grid-Tied Photovoltaic Systems Utilizing Dynamic Reactive Power Control“. Scholar Commons, 2010. http://scholarcommons.usf.edu/etd/3615.
Der volle Inhalt der QuelleChang, Chien-tsung, und 張建聰. „Switchyard Control Room Power Scada System“. Thesis, 2009. http://ndltd.ncl.edu.tw/handle/95981105331854524277.
Der volle Inhalt der Quelle逢甲大學
資訊電機工程碩士在職專班
97
「Switchyard Control Room Power Scada System」is a system that is devoted to the remote power monitoring and the dispatch at the switchyard in the power plant. The switchyard is built primarily to connect the power that is produced by generation system and provider system in the power plant. Now, the switchyard is disposed four shifts personnel in shifts, and all of the controls (e.g. state monitor and value record)are operated by personnel at the switchyard. Presently, there are ten generator sets built in power plant. Each generator set has its control room. It is beneficial for the power plant to replace the existing switchyard by an unmanned style with the capability of remote control to save the cost of manpower. This thesis is dedicated to a「Switchyard Control Room Power Scada System」, including complete switch equipment and control, monitor and data acquisition about ten generator sets. The control, monitor and data acquisition of equipments of switchyard can be executed in personal computer. It can achieve the function of remote control by Ethernet and industry standard communication interface to connect remote terminal units, control room of generator sets and plant information system.
Kumar, Rajeev. „Room Temperature Control using On-Off Controller“. Thesis, 2016. http://ethesis.nitrkl.ac.in/8014/1/2016_BT_RajeevKumar_112EE0238.pdf.
Der volle Inhalt der QuelleChen, Yuan-He, und 陳源和. „Grid-Connected Power Factor Control Strategy for Direct Grid-Connected Excited Synchronous Wind Power Generators with Servo Motor Control“. Thesis, 2019. http://ndltd.ncl.edu.tw/handle/s37h3e.
Der volle Inhalt der Quelle國立中山大學
電機工程學系研究所
107
This thesis proposes the direct grid-connected excited synchronous wind power system with servo motor control. The main structure of this system is using coupling to connect excited synchronous generator and servo motor in a coaxial framework. We can precisely control the generator output with the servo motor. Since the excited synchronous generator can operate in high voltage, the usage of power converter is no longer needed. Therefore, we can improve reliability, reach higher quality and achieve efficient grid connection. The servo motor can adjust the frequency and phase of generator output in time to reach the requirement of grid connection. During the grid connection, the motor can improve the power factor so that the output can be applied more efficiently. The servo motor can remain very low power consumption in the process to optimize the application of the wind power. This thesis also proposes a strategy to control the power factor of the system. The strategy controls the generator current phase to lag the main voltage phase and result in a fixed phase difference between the two in order to control the value of the power factor and discuss the influence on generator current in different power factors. It also proposes that the servo motor providing different energy to the system, which can effectively improve the output power of the generator.
Fong-JhihGuo und 郭鳳枝. „Bidirectional Control of Power Flow between DC Micro-grid and AC Grid“. Thesis, 2016. http://ndltd.ncl.edu.tw/handle/38065587431547124747.
Der volle Inhalt der Quelle國立成功大學
電機工程學系
104
In recent years, micro-grid system is one of the key developing roadmap of electric power industry. To solve the unstable supply problem from renewable energy, the DC micro-grid used to be supplemented by several backup resources, like fuel cell and battery. If the DC micro-grid is interconnected with AC grid, the AC side can serve as another backup option. This thesis is to study the control of power flow between DC micro-grid and AC grid using a bidirectional power converter. As renewable energy shortage takes place at DC side, the deficit energy can be supplied from AC grid. On the other hand, as decreased DC loading or excessive renewable energy takes place at the DC side, the redundant energy can be transferred to AC grid. This thesis first describes a three-phase bridge topology controlled by Sinusoidal Pulse-width Modulation. Following that, a synchronous reference frame phase-lock loop method for AC grid connection is illustrated. The proposed three-phase power converter is operated between inverter mode and rectifier mode. As voltage of DC bus is higher than the preset threshold, the power converter effectively operates at inverter mode to transfer excess energy from DC grid to AC grid, and vice versa as the power converter is operating at rectifier mode. The experiment shows that power balance between DC micro-grid and AC grid is achieved by controlling bi-directional power flow.
Das, Anasuya. „The H∞ Control Method of Grid-Tied Photovoltaic Generation“. Thesis, 2016. http://ethesis.nitrkl.ac.in/9127/1/2016_MT_ADas.pdf.
Der volle Inhalt der QuelleChen, Jyun-Jia, und 陳俊嘉. „Grid-connected Control Strategy for Direct Grid-connected Excited Synchronous Wind Power Generators with Servo Motor Control“. Thesis, 2018. http://ndltd.ncl.edu.tw/handle/85ejcg.
Der volle Inhalt der Quelle國立中山大學
電機工程學系研究所
106
This thesis proposes the direct grid-connected excited synchronous wind power system. The main structure of this system is using coupling to connect excited synchronous generator and servo motor in a coaxial framework. Since we can precisely control the generator output with the servo motor, we can achieve high quality and efficient grid connection. The servo motor can adjust the frequency and phase of generator output in time to reach the requirement of grid connection. Besides, the motor can improve the power factor during the grid connection so that the output can be applied more efficiently. However, the servo motor is able to use as little energy as possible throughout the process to optimize the application of the wind power. Furthermore, with the characteristic that the excited synchronous generator can output directly with high voltage, we can not only reduce the electronic converter but also improve the efficiency and reliability. This thesis also proposes the analysis of system parameter optimization. With multiple data, we compare the effect of the parameters change in each loop on the system and the grid connection. The control loop includes the Maximum Power Tracking, the Frequency Locking, the Phase Locking and the Power Factor Correction, etc.. By observing the motor power, the phase difference between the absolute angle of the transmission shaft and the mains power and the phase difference between the generator output and the mains power, etc., the changes caused by the different parameters are analyzed. As a result, we are able to conclude a set of better result which can be used to deliver the wind energy more efficiently to the grid.