Auswahl der wissenschaftlichen Literatur zum Thema „Power dynamic“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Power dynamic" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Power dynamic"

1

Madzharov, Nikolay D., Raycho T. Ilarionov und Anton T. Tonchev. „System for Dynamic Inductive Power Transfer“. Indian Journal of Applied Research 4, Nr. 7 (01.10.2011): 173–76. http://dx.doi.org/10.15373/2249555x/july2014/52.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

K, Sureshkumar, Vasanthamani S, Mariammal M, Raj S und Vinodkumar R.L. „Power Quality Improvement Using Dynamic Voltage Restorer“. Bonfring International Journal of Power Systems and Integrated Circuits 9, Nr. 1 (29.03.2019): 01–04. http://dx.doi.org/10.9756/bijpsic.9002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Sun, Shu Xia, Xiang Jun Zhu und Ming Ming Wang. „Power Turret the Dynamics Simulation Analysis of Power Turret“. Applied Mechanics and Materials 198-199 (September 2012): 133–36. http://dx.doi.org/10.4028/www.scientific.net/amm.198-199.133.

Der volle Inhalt der Quelle
Annotation:
The dynamic performance of the CNC turret affect the cutting capability and cutting efficiency of the NC machine tool directly, embody the core level of the design and manufacture of the NC machine tool. However, the dynamic performance of the CNC turret mostly decided by the dynamic performance of the power transmission system of the power turret. This passage use Pro/E to set the accurate model of the gears and the CAD model of the gear transmission system and based on this to constitute the ADAMS model of virtual prototype. On the many-body contact dynamics theory basis, dynamic describes the process of the mesh of the gears, work out the dynamic meshing force under the given input rotating speed and loading, and the vibration response of the gear system. The simulation result disclosure the meshing shock excitation and periodical fluctuation phenomena arose by stiffness excitation of the gear transmission. Analyses and pick-up the radial vibration response of the output gear of the gear transmission system as the feasibility analysis data.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

KATAGIRI, Yukinori, Takuya YOSHIDA und Tatsurou YASHIKI. „E208 AUTOMATIC CODE GENERATION SYSTEM FOR POWER PLANT DYNAMIC SIMULATORS(Power System-2)“. Proceedings of the International Conference on Power Engineering (ICOPE) 2009.2 (2009): _2–401_—_2–406_. http://dx.doi.org/10.1299/jsmeicope.2009.2._2-401_.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Kuivaniemi, Teemu, Antti Mäntylä, Ilkka Väisänen, Antti Korpela und Tero Frondelius. „Dynamic Gear Wheel Simulations using Multibody Dynamics“. Rakenteiden Mekaniikka 50, Nr. 3 (21.08.2017): 287–91. http://dx.doi.org/10.23998/rm.64944.

Der volle Inhalt der Quelle
Annotation:
Simulation of the gear train is an important part of the dynamic simulation of the power train of a medium speed diesel engine. In this paper, the advantages of dynamic gear wheel simulation as a part of the flexible multibody simulation of a complete power train are described. The simulation is performed using AVL EXCITE Power Unit.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Obukhov, S. G. „DYNAMIC WIND SPEED MODEL FOR SOLVING WIND POWER PROBLEMS“. Eurasian Physical Technical Journal 17, Nr. 1 (Juni 2020): 77–84. http://dx.doi.org/10.31489/2020no1/77-84.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Neuman, P., K. Máslo, B. Šulc und A. Jarolímek. „Power System and Power Plant Dynamic Simulation“. IFAC Proceedings Volumes 32, Nr. 2 (Juli 1999): 7294–99. http://dx.doi.org/10.1016/s1474-6670(17)57244-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Liaw, Jim-Shih, und Theodore W. Berger. „Dynamic synapse: Harnessing the computing power of synaptic dynamics“. Neurocomputing 26-27 (Juni 1999): 199–206. http://dx.doi.org/10.1016/s0925-2312(99)00063-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Park, Jooyoung, Gyo-Bum Chung, Jungdong Lim und Dongsu Yang. „Dynamic Power Management for Portable Hybrid Power-Supply Systems Utilizing Approximate Dynamic Programming“. Energies 8, Nr. 6 (29.05.2015): 5053–73. http://dx.doi.org/10.3390/en8065053.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Felder, Frank A., und Steve R. Peterson. „Market power analysis in a dynamic electric power“. Electricity Journal 10, Nr. 3 (April 1997): 12–19. http://dx.doi.org/10.1016/s1040-6190(97)80373-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Power dynamic"

1

Demiray, Turhan Hilmi. „Simulation of power system dynamics using dynamic phasor models /“. Zürich : ETH, 2008. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=17607.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Hockenberry, James Richard. „Power system dynamic load modeling“. Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/42594.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Geitner, Gert-Helge, und Guven Komurgoz. „Power Flow Modelling of Dynamic Systems“. Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-171305.

Der volle Inhalt der Quelle
Annotation:
As tools for dynamic system modelling both conventional methods such as transfer function or state space representation and modern power flow based methods are available. The latter methods do not depend on energy domain, are able to preserve physical system structures, visualize power conversion or coupling or split, identify power losses or storage, run on conventional software and emphasize the relevance of energy as basic principle of known physical domains. Nevertheless common control structures as well as analysis and design tools may still be applied. Furthermore the generalization of power flow methods as pseudo-power flow provides with a universal tool for any dynamic modelling. The phenomenon of power flow constitutes an up to date education methodology. Thus the paper summarizes fundamentals of selected power flow oriented modelling methods, presents a Bond Graph block library for teaching power oriented modelling as compact menu-driven freeware, introduces selected examples and discusses special features.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Bousnane, Kafiha. „Real-time power system dynamic simulation“. Thesis, Durham University, 1990. http://etheses.dur.ac.uk/6623/.

Der volle Inhalt der Quelle
Annotation:
The present day digital computing resources are overburdened by the amount of calculation necessary for power system dynamic simulation. Although the hardware has improved significantly, the expansion of the interconnected systems, and the requirement for more detailed models with frequent solutions have increased the need for simulating these systems in real time. To achieve this, more effort has been devoted to developing and improving the application of numerical methods and computational techniques such as sparsity-directed approaches and network decomposition to power system dynamic studies. This project is a modest contribution towards solving this problem. It consists of applying a very efficient sparsity technique to the power system dynamic simulator under a wide range of events. The method used was first developed by Zollenkopf (^117) Following the structure of the linear equations related to power system dynamic simulator models, the original algorithm which was conceived for scalar calculation has been modified to use sets of 2 * 2 sub-matrices for both the dynamic and algebraic equations. The realisation of real-time simulators also requires the simplification of the power system models and the adoption of a few assumptions such as neglecting short time constants. Most of the network components are simulated. The generating units include synchronous generators and their local controllers, and the simulated network is composed of transmission lines and transformers with tap-changing and phase-shifting, non-linear static loads, shunt compensators and simplified protection. The simulator is capable of handling some of the severe events which occur in power systems such as islanding, island re-synchronisation and generator start-up and shut-down. To avoid the stiffness problem and ensure the numerical stability of the system at long time steps at a reasonable accuracy, the implicit trapezoidal rule is used for discretising the dynamic equations. The algebraisation of differential equations requires an iterative process. Also the non-linear network models are generally better solved by the Newton-Raphson iterative method which has an efficient quadratic rate of convergence. This has favoured the adoption of the simultaneous technique over the classical partitioned method. In this case the algebraised differential equations and the non-linear static equations are solved as one set of algebraic equations. Another way of speeding-up centralised simulators is the adoption of distributed techniques. In this case the simulated networks are subdivided into areas which are computed by a multi-task machine (Perkin Elmer PE3230). A coordinating subprogram is necessary to synchronise and control the computation of the different areas, and perform the overall solution of the system. In addition to this decomposed algorithm the developed technique is also implemented in the parallel simulator running on the Array Processor FPS 5205 attached to a Perkin Elmer PE 3230 minicomputer, and a centralised version run on the host computer. Testing these simulators on three networks under a range of events would allow for the assessment of the algorithm and the selection of the best candidate hardware structure to be used as a dedicated machine to support the dynamic simulator. The results obtained from this dynamic simulator are very impressive. Great speed-up is realised, stable solutions under very severe events are obtained showing the robustness of the system, and accurate long-term results are obtained. Therefore, the present simulator provides a realistic test bed to the Energy Management System. It can also be used for other purposes such as operator training.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Song, Xuefeng. „Dynamic modeling issues for power system applications“. Texas A&M University, 2003. http://hdl.handle.net/1969.1/1591.

Der volle Inhalt der Quelle
Annotation:
Power system dynamics are commonly modeled by parameter dependent nonlinear differential-algebraic equations (DAE) x p y x f ) and 0 = p y x g ) . Due to (,, (,, the algebraic constraints, we cannot directly perform integration based on the DAE. Traditionally, we use implicit function theorem to solve for fast variables y to get a reduced model in terms of slow dynamics locally around x or we compute y numerically at each x . However, it is well known that solving nonlinear algebraic equations analytically is quite difficult and numerical solution methods also face many uncertainties since nonlinear algebraic equations may have many solutions, especially around bifurcation points. In this thesis, we apply the singular perturbation method to model power system dynamics in a singularly perturbed ODE (ordinary-differential equation) form, which makes it easier to observe time responses and trace bifurcations without reduction process. The requirements of introducing the fast dynamics are investigated and the complexities in the procedures are explored. Finally, we propose PTE (Perturb and Taylor’s expansion) technique to carry out our goal to convert a DAE to an explicit state space form of ODE. A simplified unreduced Jacobian matrix is also introduced. A dynamic voltage stability case shows that the proposed method works well without complicating the applications.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

James, Iain B. „Dynamic characteristics of a split-power IVT“. Thesis, University of Bath, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.390305.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

McCoy, Timothy J. (Timothy John). „Dynamic simulation of shipboard electric power systems“. Thesis, Massachusetts Institute of Technology, 1993. http://hdl.handle.net/1721.1/12495.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Singhavilai, Thamvarit. „Identification of electric power system dynamic equivalent“. Thesis, University of Strathclyde, 2011. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=15647.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Schwingshackl, Christoph Wolfgang. „Dynamic behaviour of inhomogeneous multifunctional power structures“. Thesis, University of Southampton, 2006. https://eprints.soton.ac.uk/52007/.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Xia, Xiuxian. „Dynamic power distribution management for all electric aircraft“. Thesis, Cranfield University, 2011. http://dspace.lib.cranfield.ac.uk/handle/1826/6285.

Der volle Inhalt der Quelle
Annotation:
In recent years, with the rapid development of electric and electronic technology, the All-Electric Aircraft (AEA) concept has attracted more and more attention, which only utilizes the electric power instead of conventional hydraulic and pneumatic power to supply all the airframe systems. To meet the power requirements under various flight stages and operating conditions, the AEA approach has resulted in the current aircraft electrical power generation capacity up to 1.6 MW. To satisfy the power quality and stability requirements, the advanced power electronic interfaces and more efficient power distribution systems must be investigated. Moreover, with the purpose of taking the full advantages of available electrical power, novel dynamic power distribution management research and design for an AEA must be carried out. The main objective of this thesis is to investigate and develop a methodology of more efficient power distribution management with the purpose of minimizing the rated power generating capacity and the mass of the electrical power system (EPS) including the power generation system and the power distribution system in an AEA. It is important to analyse and compare the subsistent electrical power distribution management approaches in current aircraft. Therefore the electrical power systems of A320 and B777, especially the power management system, will be discussed in this thesis. Most importantly the baseline aircraft, the Flying Crane is the outcome of the group design project. The whole project began in March 2008, and ended in September 2010, including three stages: conceptual design, preliminary design and detailed design. The dynamic power distribution management research is based on the power distribution system of the Flying Crane. The main task of the investigation is to analyse and manage the power usage among and inside typical airframe systems by using dynamic power distribution management method. The characteristics and operation process of these systems will be investigated in detail and thoroughly. By using the method of dynamic power distribution management, all the electrical consumers and sub-systems powered by electricity are managed effectively. The performance of an aircraft can be improved by reducing the peak load requirement on board. Furthermore, the electrical system architecture, distributed power distribution system and the dynamic power distribution management system for AEA are presented. Finally, the mass of the whole electrical power system is estimated and analysed carefully.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Power dynamic"

1

Benini, Luca, und Giovanni De Micheli. Dynamic Power Management. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5455-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kanazawa, Hirokazu. Dynamic power of karate. Thousand Oaks, CA, USA: Dragon Books, 1986.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Kanazawa, Hirokazu. Dynamic power of karate. (London): Dragon Books, 1986.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kanazawa, Hirokazu. Dynamic power of karate. Thousand Oaks,California: Dragon Books, 1986.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Magdy, Gaber, Gaber Shabib, Adel A. Elbaset und Yasunori Mitani. Renewable Power Systems Dynamic Security. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-33455-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Rasgotra, Maharajakrishna. The New Asian Power Dynamic. B-42, Panchsheel Enclave, New Delhi 110 017 India: SAGE Publications India Pvt Ltd, 2007. http://dx.doi.org/10.4135/9788132101352.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

M, Rasgotra, und Observer Research Foundation, Hrsg. The new Asian power dynamic. New Delhi: SAGE, 2007.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

L, Labus Thomas, Lovely Ronald G und United States. National Aeronautics and Space Administration., Hrsg. Solar dynamic power module design. [Washington, DC]: National Aeronautics and Space Administration, 1989.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Mason, Lee S. A Solar Dynamic power option for Space Solar Power. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 1999.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Edgar, M. T. Dynamic stability modelling of power systems. Manchester: UMIST, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Power dynamic"

1

Ma, J., Q. Lu und Y. H. Song. „Dynamic Congestion Management“. In Power Systems, 177–203. London: Springer London, 2003. http://dx.doi.org/10.1007/978-1-4471-3735-1_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Haarla, Liisa, Mikko Koskinen, Ritva Hirvonen und Pierre-Etienne Labeau. „Dynamic Consequence Analysis“. In Power Systems, 105–20. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-145-5_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Jardim, Jorge L. „Online Dynamic Security Assessment“. In Power Electronics and Power Systems, 159–97. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06680-6_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Singh, Gaurav, und Sandeep K. Shukla. „Dynamic Power Optimizations“. In Low Power Hardware Synthesis from Concurrent Action-Oriented Specifications, 83–101. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-6481-6_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Welshon, Rex. „Self, Will, Power“. In Nietzsche’s Dynamic Metapsychology, 166–96. London: Palgrave Macmillan UK, 2014. http://dx.doi.org/10.1057/9781137317032_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Karkori, Fidaa. „Power System Design“. In Dynamic Positioning Systems, 19–28. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-59173-0_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Čepin, Marko. „Dynamic Programming“. In Assessment of Power System Reliability, 253–55. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-688-7_17.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Khaitan, Siddhartha Kumar, und James D. McCalley. „Dynamic Load Balancing and Scheduling for Parallel Power System Dynamic Contingency Analysis“. In Power Systems, 189–209. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-32683-7_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Benini, Luca, und Giovanni De Micheli. „Introduction“. In Dynamic Power Management, 1–39. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5455-4_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Benini, Luca, und Giovanni De Micheli. „Background“. In Dynamic Power Management, 41–63. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5455-4_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Power dynamic"

1

Baumgarten, Erik, und Steven J. Silverman. „Dynamic DoDAF power tools“. In MILCOM 2008 - 2008 IEEE Military Communications Conference (MILCOM). IEEE, 2008. http://dx.doi.org/10.1109/milcom.2008.4753127.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Zhenfei Tang. „Power market dynamic analysis“. In APSCOM 2000 - 5th International Conference on Advances in Power System Control, Operation and Management. IEE, 2000. http://dx.doi.org/10.1049/cp:20000441.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Fedorová, Kristína, Tereza Ábelová und Michal Kvasnica. „Dynamic Power Purchase Agreement“. In 2023 24th International Conference on Process Control (PC). IEEE, 2023. http://dx.doi.org/10.1109/pc58330.2023.10217697.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kishan, V. Krishna, P. Pawan Puthra und K. Narender Reddy. „Paralleling of inverters with dynamic load sharing“. In 2016 IEEE 7th Power India International Conference (PIICON). IEEE, 2016. http://dx.doi.org/10.1109/poweri.2016.8077429.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Zhuo, Jianli, Chaitali Chakrabarti, Kyungsoo Lee und Naehyuck Chang. „Dynamic Power Management with Hybrid Power Sources“. In 2007 44th ACM/IEEE Design Automation Conference. IEEE, 2007. http://dx.doi.org/10.1109/dac.2007.375286.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Zhuo, Jianli, Chaitali Chakrabarti, Kyungsoo Lee und Naehyuck Chang. „Dynamic power management with hybrid power sources“. In the 44th annual conference. New York, New York, USA: ACM Press, 2007. http://dx.doi.org/10.1145/1278480.1278695.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Chai, Shan, Xianyue Gang, Yigang Sun und Ensun Yu. „A Dynamic Analysis for the Loose Lashing Wire Grouped Blade“. In ASME 2005 Power Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/pwr2005-50162.

Der volle Inhalt der Quelle
Annotation:
The loose lashing wire grouped blade, all blades of which are linked by a loose lashing wire, is a kind of damped blade. The linear analysis method cannot be used for the dynamic analysis of loose lashing wire grouped blade because of the contact between loose lashing wire and blades. A non-linear dynamic analysis method is advanced and an application of the method to a kind of loose lashing wire grouped blade is shown in this paper. First, the nonlinear transient dynamic analysis and maximum entropy spectrum analysis methods for loose lashing wire grouped blade are studied. Then, an algorithm to calculate the dynamical stress of loose lashing wire grouped blade with transient dynamical analysis method is proposed. The proposed method provides a useful numerical calculating method for the calculation of dynamical frequency and dynamical stress of loose lashing wire grouped blades.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Feng, X., Z. Lubosny und J. W. Bialek. „Identification based Dynamic Equivalencing“. In 2007 IEEE Power Tech. IEEE, 2007. http://dx.doi.org/10.1109/pct.2007.4538328.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Xiros, Nikolaos I., Michael M. Bernitsas, Hai Sun, Ralph Saxton und Juliette W. Ioup. „Dynamic Modeling of Flow Induced Vibration Power-Plants“. In ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/omae2018-78163.

Der volle Inhalt der Quelle
Annotation:
Based on experimental data from the Marine Renewable Energy Laboratory (MRELab) at the University of Michigan, a data model is developed in order to permit dynamical analysis and controller synthesis for power-plants based on Vortex Induced Vibrations (VIV) for power generation and energy production. For the particular experimental settings used at the MRELab, data series of various kinematic, dynamic and energetic variables were recorded through the use of one to two cylinders as bluff bodies in a cross-flow. In the present research, these data series are analyzed in order to produce a dynamical model in an appropriate phase space. The process of model derivation is entirely data-driven in the sense that the number of degrees of freedom, or state variables, reflects the dimension of the phase space for the process. The outcome is a model which allows the identification of regime-dependent features such as attractors, basins of attraction, separatrices, etc., which can occur in the basic system dynamics.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Novac, B. M. „Fast pulse dynamic transformer“. In IEE Symposium Pulsed Power 2000. IEE, 2000. http://dx.doi.org/10.1049/ic:20000296.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Power dynamic"

1

Groves, Taylor, und Ryan Grant. Power Aware Dynamic Provisioning of HPC Networks. Office of Scientific and Technical Information (OSTI), Oktober 2015. http://dx.doi.org/10.2172/1331496.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Johnson, G., W. Determan und W. Otting. NASA low power DIPS [Dynamic Isotope Power System] conceptual design requirements document. Office of Scientific and Technical Information (OSTI), Januar 1990. http://dx.doi.org/10.2172/721000.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Brady, Patrick, und Bobby Middleton. A Dynamic Simulation Technoeconomic Model for Power Generation. Office of Scientific and Technical Information (OSTI), August 2020. http://dx.doi.org/10.2172/1648193.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Hill, Rachael, und Johanna Oxstrand. Dynamic Instructions for Nuclear Power Plant Field Workers. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/2315030.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Zhou, Ning, Zhenyu Huang, Da Meng, Stephen T. Elbert, Shaobu Wang und Ruisheng Diao. Capturing Dynamics in the Power Grid: Formulation of Dynamic State Estimation through Data Assimilation. Office of Scientific and Technical Information (OSTI), März 2014. http://dx.doi.org/10.2172/1172467.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Silva, Catia, Ricardo Bessa, Erika Pequeno, Sumaili Jean, Miranda Vladimiro, Zhi Zhou und Audun Botterud. Dynamic Factor Graphs - A New Wind Power Forecasting Approach. Office of Scientific and Technical Information (OSTI), September 2014. http://dx.doi.org/10.2172/1165671.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Singh, Mohit, und Surya Santoso. Dynamic Models for Wind Turbines and Wind Power Plants. Office of Scientific and Technical Information (OSTI), Oktober 2011. http://dx.doi.org/10.2172/1028524.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Holmberg, David. Impact of Dynamic Prices on Distribution Grid Power Quality. Gaithersburg, MD: National Institute of Standards and Technology, 2023. http://dx.doi.org/10.6028/nist.tn.2261.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Battaglini, Marco, und Thomas Palfrey. Dynamic Collective Action and the Power of Large Numbers. Cambridge, MA: National Bureau of Economic Research, Mai 2024. http://dx.doi.org/10.3386/w32473.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Mock, Raymond Cecil, Thomas J. Nash und Thomas W. L. Sanford. Current scaling of axially radiated power in dynamic hohlraums and dynamic hohlraum load design for ZR. Office of Scientific and Technical Information (OSTI), März 2007. http://dx.doi.org/10.2172/901969.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie