Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Power Chip on Chip“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Power Chip on Chip" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Power Chip on Chip"
Tan, N., und S. Eriksson. „Low-power chip-to-chip communication circuits“. Electronics Letters 30, Nr. 21 (13.10.1994): 1732–33. http://dx.doi.org/10.1049/el:19941178.
Der volle Inhalt der QuelleYerman, AlexanderJ. „4538170 Power chip package“. Microelectronics Reliability 26, Nr. 3 (Januar 1986): 594. http://dx.doi.org/10.1016/0026-2714(86)90686-4.
Der volle Inhalt der QuelleVali, S. Sadiq, K. B. Madhu Mohan, S. Sreenivasulu, S. S. Zahoor Ahmed und T. Muneer. „Low Power Encoding Technique for Network on Chip“. International Journal of Research Publication and Reviews 4, Nr. 4 (27.04.2023): 4950–53. http://dx.doi.org/10.55248/gengpi.234.4.38292.
Der volle Inhalt der QuelleFOK, C. W., und D. L. PULFREY. „FULL-CHIP POWER-SUPPLY NOISE: THE EFFECT OF ON-CHIP POWER-RAIL INDUCTANCE“. International Journal of High Speed Electronics and Systems 12, Nr. 02 (Juni 2002): 573–82. http://dx.doi.org/10.1142/s0129156402001472.
Der volle Inhalt der QuelleEireiner, M., S. Henzler, X. Zhang, J. Berthold und D. Schmitt-Landsiedel. „Impact of on-chip inductance on power supply integrity“. Advances in Radio Science 6 (26.05.2008): 227–32. http://dx.doi.org/10.5194/ars-6-227-2008.
Der volle Inhalt der QuelleLi, Jun Hui, Lei Han, Ji An Duan und Jue Zhong. „Features of Machine Variables in Thermosonic Flip Chip“. Key Engineering Materials 339 (Mai 2007): 257–62. http://dx.doi.org/10.4028/www.scientific.net/kem.339.257.
Der volle Inhalt der QuelleYin, Feng Ling, Bing Quan Huo, Hai Bo Wang und Long Cheng. „A Design for Power Supply Monitoring“. Advanced Materials Research 912-914 (April 2014): 1061–64. http://dx.doi.org/10.4028/www.scientific.net/amr.912-914.1061.
Der volle Inhalt der QuelleLaha, Soumyasanta, Savas Kaya, David W. Matolak, William Rayess, Dominic DiTomaso und Avinash Kodi. „A New Frontier in Ultralow Power Wireless Links: Network-on-Chip and Chip-to-Chip Interconnects“. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 34, Nr. 2 (Februar 2015): 186–98. http://dx.doi.org/10.1109/tcad.2014.2379640.
Der volle Inhalt der QuellePathak, Divya, Houman Homayoun und Ioannis Savidis. „Smart Grid on Chip: Work Load-Balanced On-Chip Power Delivery“. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 25, Nr. 9 (September 2017): 2538–51. http://dx.doi.org/10.1109/tvlsi.2017.2699644.
Der volle Inhalt der QuelleKose, Selçuk, und Eby G. Friedman. „Distributed On-Chip Power Delivery“. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 2, Nr. 4 (Dezember 2012): 704–13. http://dx.doi.org/10.1109/jetcas.2012.2226378.
Der volle Inhalt der QuelleDissertationen zum Thema "Power Chip on Chip"
Belfiore, Guido, Laszlo Szilagyi, Ronny Henker und Frank Ellinger. „Low power laser driver design in 28nm CMOS for on-chip and chip-to-chip optical interconnect“. SPIE, 2015. https://tud.qucosa.de/id/qucosa%3A34801.
Der volle Inhalt der QuelleOchana, Andrew. „Power cycling of flip chip assemblies“. Thesis, Loughborough University, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.418328.
Der volle Inhalt der QuelleMischenko, Alexandre. „On-chip cooling and power generation“. Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612857.
Der volle Inhalt der QuellePeter, Eldhose. „Power efficient on-chip optical interconnects“. Thesis, IIT Delhi, 2016. http://localhost:8080/iit/handle/2074/7224.
Der volle Inhalt der QuelleWu, Wei-Chung. „On-chip charge pumps“. Diss., Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/13451.
Der volle Inhalt der QuelleHamwi, Khawla. „Low Power Design Methodology and Photonics Networks on Chip for Multiprocessor System on Chip“. Thesis, Brest, 2013. http://www.theses.fr/2013BRES0029.
Der volle Inhalt der QuelleMultiprocessor systems on chip (MPSoC)s are strongly emerging as main components in high performance embedded systems. Several challenges can be determined in MPSoC design like the challenge which comes from interconnect infrastructure. Network-on-Chip (NOC) with multiple constraints to be satisfied is a promising solution for these challenges. ITRS predicts that hundreds of cores will be used in future generation system on chip (SoC) and thus raises the issue of scalability, bandwidth and implementation costs for NoCs. These issues are raised within the various technological trends in semiconductors and photonics. This PhD thesis advocates the use of NoC synthesis as the most appropriate approach to exploit these technological trends catch up with the applications requirements. Starting with several design methodologies based on FPGA technology and low power estimation techniques (HLS) for several IPs, we propose an ASIC implementation based on 3D Tezzaron technology. Multi-FPGA technology is used to validate MPSoC design with up to 64 processors with Butterfly NoC. NoC synthesis is based on a clustering of masters and slaves generating asymmetric architectures with appropriate support for very high bandwidth requests through Optical NoC (ONoC) while lower bandwidth requests are processed by electronic NoC. A linear programming is proposed as a solution to the NoC synthesis
Hamwi, Khawla. „Low Power Design Methodology and Photonics Networks on Chip for Multiprocessor System on Chip“. Electronic Thesis or Diss., Brest, 2013. http://www.theses.fr/2013BRES0029.
Der volle Inhalt der QuelleMultiprocessor systems on chip (MPSoC)s are strongly emerging as main components in high performance embedded systems. Several challenges can be determined in MPSoC design like the challenge which comes from interconnect infrastructure. Network-on-Chip (NOC) with multiple constraints to be satisfied is a promising solution for these challenges. ITRS predicts that hundreds of cores will be used in future generation system on chip (SoC) and thus raises the issue of scalability, bandwidth and implementation costs for NoCs. These issues are raised within the various technological trends in semiconductors and photonics. This PhD thesis advocates the use of NoC synthesis as the most appropriate approach to exploit these technological trends catch up with the applications requirements. Starting with several design methodologies based on FPGA technology and low power estimation techniques (HLS) for several IPs, we propose an ASIC implementation based on 3D Tezzaron technology. Multi-FPGA technology is used to validate MPSoC design with up to 64 processors with Butterfly NoC. NoC synthesis is based on a clustering of masters and slaves generating asymmetric architectures with appropriate support for very high bandwidth requests through Optical NoC (ONoC) while lower bandwidth requests are processed by electronic NoC. A linear programming is proposed as a solution to the NoC synthesis
Lai, Yin Hing. „High power flip-chip light emitting diode /“. View abstract or full-text, 2004. http://library.ust.hk/cgi/db/thesis.pl?ELEC%202004%20LAI.
Der volle Inhalt der QuelleIncludes bibliographical references (leaves 60-68). Also available in electronic version. Access restricted to campus users.
Singhal, Rohit. „Data integrity for on-chip interconnects“. Texas A&M University, 2003. http://hdl.handle.net/1969.1/5929.
Der volle Inhalt der QuelleOberle, Michael. „Low power systems-on-chip for biomedical applications /“. [S.l.] : [s.n.], 2002. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=14509.
Der volle Inhalt der QuelleBücher zum Thema "Power Chip on Chip"
Allard, Bruno, Hrsg. Power Systems-On-Chip. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119377702.
Der volle Inhalt der QuelleSilvano, Cristina, Marcello Lajolo und Gianluca Palermo, Hrsg. Low Power Networks-on-Chip. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4419-6911-8.
Der volle Inhalt der QuelleSilvano, Cristina. Low Power Networks-on-Chip. Boston, MA: Springer Science+Business Media, LLC, 2011.
Den vollen Inhalt der Quelle findenVaisband, Inna P., Renatas Jakushokas, Mikhail Popovich, Andrey V. Mezhiba, Selçuk Köse und Eby G. Friedman. On-Chip Power Delivery and Management. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29395-0.
Der volle Inhalt der QuelleHu, John, und Mohammed Ismail. CMOS High Efficiency On-chip Power Management. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9526-1.
Der volle Inhalt der QuelleHu, John. CMOS High Efficiency On-chip Power Management. New York, NY: Springer Science+Business Media, LLC, 2011.
Den vollen Inhalt der Quelle findenTanzawa, Toru. On-chip High-Voltage Generator Design. New York, NY: Springer New York, 2013.
Den vollen Inhalt der Quelle findenTanzawa, Toru. On-chip high-voltage generator design. New York: Springer, 2013.
Den vollen Inhalt der Quelle findenJakushokas, Renatas, Mikhail Popovich, Andrey V. Mezhiba, Selçuk Köse und Eby G. Friedman. Power Distribution Networks with On-Chip Decoupling Capacitors. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-7871-4.
Der volle Inhalt der QuellePopovich, Mikhhail, Andrey V. Mezhiba und Eby G. Friedman. Power Distribution Networks with On-Chip Decoupling Capacitors. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-71601-5.
Der volle Inhalt der QuelleBuchteile zum Thema "Power Chip on Chip"
Veendrick, Harry. „Chip Performance and Power“. In Bits on Chips, 189–201. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76096-4_11.
Der volle Inhalt der QuelleItoh, Kiyoo. „Low-Power Memory Circuits“. In VLSI Memory Chip Design, 389–423. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04478-0_7.
Der volle Inhalt der QuelleSchuermans, Stefan, und Rainer Leupers. „Network on Chip Experiments“. In Power Estimation on Electronic System Level using Linear Power Models, 97–140. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01875-7_5.
Der volle Inhalt der QuelleAlou, Pedro, José A. Cobos, Jesus A. Oliver, Bruno Allard, Benôit Labbe, Aleksandar Prodic und Aleksandar Radic. „Control Strategies and CAD Approach“. In Power Systems-On-Chip, 1–92. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119377702.ch1.
Der volle Inhalt der QuelleKulkarni, Santosh, und Cian O'Mathuna. „Magnetic Components for Increased Power Density“. In Power Systems-On-Chip, 93–132. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119377702.ch2.
Der volle Inhalt der QuelleVoiron, Frédéric. „Dielectric Components for Increased Power Density“. In Power Systems-On-Chip, 133–55. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119377702.ch3.
Der volle Inhalt der QuelleLabbe, Benoît, und Bruno Allard. „On-board Power Management DC/DC Inductive Converter“. In Power Systems-On-Chip, 157–77. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119377702.ch4.
Der volle Inhalt der QuellePillonnet, Gael, Thomas Souvignet und Bruno Allard. „On-Chip Power Management DC/DC Switched-Capacitor Converter“. In Power Systems-On-Chip, 179–212. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119377702.ch5.
Der volle Inhalt der QuelleMartin, Christian, Florian Neveu und Bruno Allard. „High-Switching Frequency Inductive DC/DC Converters“. In Power Systems-On-Chip, 213–47. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119377702.ch6.
Der volle Inhalt der QuelleProdic, Aleksandar, Sheikh Mohammad Ahsanuzzaman, Behzad Mahdavikhah und Timothy McRae. „Hybrid and Multi-level Converter Topologies for On-Chip Implementation of Reduced Voltage-Swing Converters“. In Power Systems-On-Chip, 249–83. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119377702.ch7.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Power Chip on Chip"
Wang, Zihao, Dexian Yan, Wenze Yuan, Xiaomeng Liu, Sheng Ding, Xiangjun Li, Zhaochun Wu, Lu Nie und Xiaohai Cui. „Study on CPW Microwave Power Sensor Chip“. In 2024 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1–3. IEEE, 2024. http://dx.doi.org/10.1109/icmmt61774.2024.10672367.
Der volle Inhalt der QuelleWang, Peng, F. Patrick McCluskey und Avram Bar-Cohen. „Isothermalization of an IGBT Power Electronic Chip“. In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-41019.
Der volle Inhalt der QuelleNovotny, M., J. Jankovsky und I. Szendiuch. „Chip Power Interconnection“. In 2007 30th International Spring Seminar on Electronics Technology. IEEE, 2007. http://dx.doi.org/10.1109/isse.2007.4432844.
Der volle Inhalt der QuelleCarley, Larry Richard. „Chip-to-chip RF Communications and Power Delivery via On-chip Antennas“. In the 24th Annual International Conference. New York, New York, USA: ACM Press, 2018. http://dx.doi.org/10.1145/3241539.3270100.
Der volle Inhalt der QuelleTesta, Paolo Valerio, Vincent Ries, Corrado Carta und Frank Ellinger. „200 GHz chip-to-chip wireless power transfer“. In 2018 IEEE Radio and Wireless Symposium (RWS). IEEE, 2018. http://dx.doi.org/10.1109/rws.2018.8304962.
Der volle Inhalt der QuelleOveis-Gharan, Masoud, und Gul Khan. „Power and Chip-Area Aware Network-on-Chip Modeling for System on Chip Simulation“. In Seventh International Conference on Simulation Tools and Techniques. ICST, 2014. http://dx.doi.org/10.4108/icst.simutools.2014.254626.
Der volle Inhalt der QuelleGonzalez-Nino, David, Lauren Boteler, Damian P. Urciuoli, Iain M. Kierzewski, Dimeji Ibitayo und Pedro O. Quintero. „Multifunctional Chip for Use in Thermal Analysis of Power Systems“. In ASME 2018 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/ipack2018-8355.
Der volle Inhalt der QuelleParhizi, Mohammad, Ali Akbar Merrikh und Ankur Jain. „Investigation of Two-Phase, Vapor Chamber Based Thermal Management of Multiple Microserver Chips“. In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-39928.
Der volle Inhalt der QuelleFOK, C. W., und D. L. PULFREY. „FULL-CHIP POWER-SUPPLY NOISE: THE EFFECT OF ON-CHIP POWER-RAIL INDUCTANCE“. In Proceedings of the 2002 Workshop on Frontiers in Electronics (WOFE-02). WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812796912_0031.
Der volle Inhalt der QuelleRoberts, Jordan, M. Kaysar Rahim, Jeffrey C. Suhling, Richard C. Jaeger, Pradeep Lall und Ron Zhang. „Characterization of Die Stress Distributions in Area Array Flip Chip Packaging“. In ASME 2009 InterPACK Conference collocated with the ASME 2009 Summer Heat Transfer Conference and the ASME 2009 3rd International Conference on Energy Sustainability. ASMEDC, 2009. http://dx.doi.org/10.1115/interpack2009-89383.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Power Chip on Chip"
Rahman, Abdur, Mohammad Marufuzzaman, Jason Street, James Wooten, Veera Gnaneswar Gude, Randy Buchanan und Haifeng Wang. A comprehensive review on wood chip moisture content assessment and prediction. Engineer Research and Development Center (U.S.), Februar 2024. http://dx.doi.org/10.21079/11681/48220.
Der volle Inhalt der QuelleLee, Fred, Qiang Li, Yipeng Su, Shu Ji, David Reusch, Dongbin Hou, Mingkai Mu und Wenli Zhang. Power Supplies on a Chip (PSOC). Office of Scientific and Technical Information (OSTI), Januar 2015. http://dx.doi.org/10.2172/1167001.
Der volle Inhalt der QuelleMehrotra, Vivek. Integrated Power Chip Converter for Solid State Lighting. Office of Scientific and Technical Information (OSTI), September 2013. http://dx.doi.org/10.2172/1569260.
Der volle Inhalt der QuelleMichelogiannakis, George, und John Shalf. Variable-Width Datapath for On-Chip Network Static Power Reduction. Office of Scientific and Technical Information (OSTI), November 2013. http://dx.doi.org/10.2172/1164909.
Der volle Inhalt der QuelleSCHROEPPEL, RICHARD C., CHERYL L. BEAVER, TIMOTHY J. DRAELOS, RITA A. GONZALES und RUSSELL D. MILLER. A Low-Power VHDL Design for an Elliptic Curve Digital Signature Chip. Office of Scientific and Technical Information (OSTI), September 2002. http://dx.doi.org/10.2172/802030.
Der volle Inhalt der QuellePande, Kanupriya. Power Chic. Ames: Iowa State University, Digital Repository, 2014. http://dx.doi.org/10.31274/itaa_proceedings-180814-991.
Der volle Inhalt der QuelleHorowitz, Mark, Don Stark, Zain Asgar, Omid Azizi, Rehan Hameed, Wajahat Qadeer, Ofer Shacham und Megan Wachs. Chip Generators Study. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2008. http://dx.doi.org/10.21236/ada505937.
Der volle Inhalt der QuelleVIANCO, PAUL T., und STEVEN N. BURCHETT. Solder Joint Reliability Predictions for Leadless Chip Resistors, Chip Capacitors, and Ferrite Chip Inductors Using the SRS Software. Office of Scientific and Technical Information (OSTI), August 2001. http://dx.doi.org/10.2172/783992.
Der volle Inhalt der QuelleDally, William J., und Charles L. Seitz. The Torus Routing Chip. Fort Belvoir, VA: Defense Technical Information Center, Januar 1986. http://dx.doi.org/10.21236/ada442968.
Der volle Inhalt der QuelleSolomon, Emilia A. NMJ-on-a-chip. Office of Scientific and Technical Information (OSTI), Juli 2018. http://dx.doi.org/10.2172/1459852.
Der volle Inhalt der Quelle