Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Power amplifiers“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Power amplifiers" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Power amplifiers"
Wang, Haishuo, Tiancheng Yu und Zhe Yang. „Design and output spectral peak power optimization of E-band fiber-amplified spontaneous emission spectra“. Highlights in Science, Engineering and Technology 72 (15.12.2023): 624–31. http://dx.doi.org/10.54097/4w1mdt53.
Der volle Inhalt der QuelleMei, Shangming, Yihua Hu, Hui Xu und Huiqing Wen. „The Class D Audio Power Amplifier: A Review“. Electronics 11, Nr. 19 (09.10.2022): 3244. http://dx.doi.org/10.3390/electronics11193244.
Der volle Inhalt der QuelleKharis, Muhamad, Dhidik Prastiyanto und Suryono Suryono. „Perbandingan Efisiensi Daya Penguat Audio Kelas AB dengan Penguat Audio Kelas D untuk Keperluan Sound System Lapangan“. Jurnal Teknik Elektro 10, Nr. 2 (19.12.2018): 54–58. http://dx.doi.org/10.15294/jte.v10i2.11183.
Der volle Inhalt der QuelleChoi, Ui-Gyu, und Jong-Ryul Yang. „A 120 W Class-E Power Module with an Adaptive Power Combiner for a 6.78 MHz Wireless Power Transfer System“. Energies 11, Nr. 8 (10.08.2018): 2083. http://dx.doi.org/10.3390/en11082083.
Der volle Inhalt der QuelleChoi, Hojong. „Development of a Class-C Power Amplifier with Diode Expander Architecture for Point-of-Care Ultrasound Systems“. Micromachines 10, Nr. 10 (14.10.2019): 697. http://dx.doi.org/10.3390/mi10100697.
Der volle Inhalt der QuelleIsmail, Khadijah, P. S. Menon, Sahbudin Shaari, Abang Annuar Ehsan, Norhana Arsad und A. Ashrif A. Bakar. „Link Power Level Improvements in an Amplified 8-Channel CWDM System with Hybrid EDFA-SOA Pre-Amplifier“. Applied Mechanics and Materials 799-800 (Oktober 2015): 1361–65. http://dx.doi.org/10.4028/www.scientific.net/amm.799-800.1361.
Der volle Inhalt der QuelleKumar, Sunil, und Arun Kr Chatterjee. „Comparative study of different Sense Amplifiers in 0.18um technology“. INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY 7, Nr. 3 (10.06.2013): 615–19. http://dx.doi.org/10.24297/ijct.v7i3.3440.
Der volle Inhalt der QuelleAlybin, Vyacheslav, Aleksey Syomochkin, Vladimir Rozhkov und Sergey Avramenko. „Major Items of Construction Amplifiers of UNF Power for the Auxiliary Systems of Spacecrafts“. Infocommunications and Radio Technologies 5, Nr. 1 (25.03.2022): 70–78. http://dx.doi.org/10.29039/2587-9936.2022.05.1.05.
Der volle Inhalt der QuelleMbonane, Sandile H., und Viranjay M. Srivastava. „Comparative Parametric Analysis of Class-B Power Amplifier Using BJT, Single-Gate MOSFET, and Double-Gate MOSFET“. Materials Science Forum 1053 (17.02.2022): 137–42. http://dx.doi.org/10.4028/p-57edxh.
Der volle Inhalt der QuelleMurtianta, Budihardja, und Erlina Sari. „Penguat Jembatan dengan Untai Pembalik Fase“. Elektrika 14, Nr. 2 (22.10.2022): 58. http://dx.doi.org/10.26623/elektrika.v14i2.5329.
Der volle Inhalt der QuelleDissertationen zum Thema "Power amplifiers"
Shao, Jin. „Advanced Power Amplifiers Design for Modern Wireless Communication“. Thesis, University of North Texas, 2015. https://digital.library.unt.edu/ark:/67531/metadc804973/.
Der volle Inhalt der QuelleLee, Ockgoo. „High efficiency switching CMOS power amplifiers for wireless communications“. Diss., Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/37145.
Der volle Inhalt der QuelleHur, Joonhoi. „A highly linear and efficient out-phasing transmitter for multi-band, multi-mode applications“. Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/42823.
Der volle Inhalt der QuelleBell, Patrick J. „MEMS-reconfigurable microwave power amplifiers“. Diss., Connect to online resource, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3219036.
Der volle Inhalt der QuelleMutha, Shashank. „Adaptive Linearization of Power Amplifiers“. The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1244049195.
Der volle Inhalt der QuelleAl, Tanany Ahmed. „A Study of Switched Mode Power Amplifiers using LDMOS“. Thesis, University of Gävle, Department of Technology and Built Environment, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-701.
Der volle Inhalt der QuelleThis work focuses on different kinds of Switch Mode Power Amplifiers (SMPAs) using LDMOS technologies. It involves a literature study of different SMPA concepts. Choosing the suitable class that achieves the high efficiency was the base stone of this
work. A push-pull class J power amplifier (PA) was designed with an integrated LC resonator inside the package using the bondwires and die capacitances. Analysis and motivation of the chosen class is included. Designing the suitable Input/Output printed circuit board (PCB) external circuits (i.e.; BALUN circuit, Matching network and DC
bias network) was part of the work. This work is done by ADS simulation and showed a simulated result of about 70% drain efficiency for 34 W output power and 16 dB gain at 2.14 GHz. Study of the losses in each part of the design elements is also included.
Another design at lower frequency (i.e.; at 0.94 GHz) was also simulated and compared to the previous design. The drain efficiency was 83% for 32 W output power and 15.4 dB Gain.
Yousefzadeh, Vahid. „Digitally controlled power converters for RF power amplifiers“. Diss., Connect to online resource, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3219220.
Der volle Inhalt der QuelleGray, Blake Raymond. „Design of RF and microwave parametric amplifiers and power upconverters“. Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/43613.
Der volle Inhalt der QuelleLehtisalo, V. (Ville). „Average power tracking optimization system for LTE power amplifiers“. Master's thesis, University of Oulu, 2014. http://jultika.oulu.fi/Record/nbnfioulu-201409171871.
Der volle Inhalt der QuelleAl-Tahir, Hibah. „Multidimensional Measurements : on RF Power Amplifiers“. Thesis, University of Gävle, Department of Technology and Built Environment, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-729.
Der volle Inhalt der QuelleAbstract
In this thesis, a measurement system was set to perform comprehensive measurements on RF power amplifiers. Data obtained from the measurements is then processed mathematically to obtain three dimensional graphs of the basic parameters affected or generated by nonlinearities of the amplifier i.e. gain, efficiency and distortion. Using a class AB amplifier as the DUT, two sets of signals – both swept in power level and frequency - were generated to validate the method, a two-tone signal and a WCDMA signal. The three dimensional plot gives a thorough representation of the behavior of the amplifier in any arbitrary range of spectrum and input level. Sweet spots are consequently easy to detect and analyze. The measurement setup can also yield other three dimensional plots of variations of gain, efficiency or distortion versus frequencies and input levels. Moreover, the measurement tool can be used to plot traditional two dimensional plots such as, input versus gain, frequency versus efficiency etc, making the setup a practical tool for RF amplifiers designers.
The test signals were generated by computer then sent to a vector signal generator that generates the actual signals fed to the amplifier. The output of the amplifier is fed to a vector signal analyzer then collected by computer to be handled. MATLAB® was used throughout the entire process.
The distortion considered in the case of the two-tone signals is the third order intermodulation distortion (IM3) whereas Adjacent Channel Power Ratio (ACPR) was considered in the case of WCDMA.
Bücher zum Thema "Power amplifiers"
Kazimierczuk, Marian K. RF Power Amplifiers. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118844373.
Der volle Inhalt der QuelleDesigning power amplifiers. Indianapolis, IN: Prompt Publications, 1999.
Den vollen Inhalt der Quelle findenRF power amplifiers. Chichester, West Sussex, U.K: Wiley, 2008.
Den vollen Inhalt der Quelle findenCordell, Bob. Designing audio power amplifiers. New York: McGraw-Hill, 2011.
Den vollen Inhalt der Quelle findendu Preez, Jaco, und Saurabh Sinha. Millimeter-Wave Power Amplifiers. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62166-1.
Der volle Inhalt der QuelleO, Sokal Nathan, Hrsg. Switchmode RF power amplifiers. Amsterdam: Elsevier/Newnes, 2007.
Den vollen Inhalt der Quelle findenSolar Ruiz, Hector, und Roc Berenguer Pérez. Linear CMOS RF Power Amplifiers. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-1-4614-8657-2.
Der volle Inhalt der QuelleB, Walker John L., Hrsg. High-power GaAs FET amplifiers. Boston: Artech House, 1993.
Den vollen Inhalt der Quelle findenAmplifiers simplified, with 40 projects. Blue Ridge Summit, PA: TAB Books, 1987.
Den vollen Inhalt der Quelle findenRF power amplifiers for wireless communications. Boston: Artech House, 1999.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Power amplifiers"
Gift, Stephan J. G., und Brent Maundy. „Power Amplifiers“. In Electronic Circuit Design and Application, 333–72. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46989-4_9.
Der volle Inhalt der QuelleGoodge, Malcolm. „Power Amplifiers“. In Analog Electronics, 241–64. London: Palgrave Macmillan UK, 1990. http://dx.doi.org/10.1007/978-1-349-20994-1_8.
Der volle Inhalt der QuelleBishop, Graham. „Power Amplifiers“. In Audio Circuits and Projects, 61–97. London: Macmillan Education UK, 1985. http://dx.doi.org/10.1007/978-1-349-07404-4_4.
Der volle Inhalt der QuelleWaterworth, G. „Power Amplifiers“. In Work Out Electronics, 168–89. London: Macmillan Education UK, 1988. http://dx.doi.org/10.1007/978-1-349-10008-8_10.
Der volle Inhalt der QuelleLong, Stephen I. „Power Amplifiers“. In Communication Electronics: RF Design with Practical Applications using Pathwave/ADS Software, 417–48. New York: River Publishers, 2023. http://dx.doi.org/10.1201/9781032629773-16.
Der volle Inhalt der QuelleKlingbeil, Harald, Ulrich Laier und Dieter Lens. „Power Amplifiers“. In Particle Acceleration and Detection, 299–325. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07188-6_6.
Der volle Inhalt der QuelleTietze, Ulrich, Christoph Schenk und Eberhard Gamm. „Power Amplifiers“. In Electronic Circuits, 867–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-78655-9_15.
Der volle Inhalt der QuelleGregorio, Fernando, Gustavo González, Christian Schmidt und Juan Cousseau. „Power Amplifiers“. In Signal Processing Techniques for Power Efficient Wireless Communication Systems, 73–104. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32437-7_4.
Der volle Inhalt der QuelleYip, Peter C. L. „Power Amplifiers“. In High-Frequency Circuit Design and Measurements, 119–38. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-011-6950-9_7.
Der volle Inhalt der QuelleRumsey, Francis, und Tim McCormick. „Power Amplifiers“. In Sound and Recording, 371–80. 8. Aufl. New York: Routledge, 2021. http://dx.doi.org/10.4324/9781003092919-12.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Power amplifiers"
Laming, R. I., D. N. Payne, F. Meli, G. Grasso und E. J. Tarbox. „Saturated Erbium-Doped Fibre Amplifiers“. In Optical Amplifiers and Their Applications. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oaa.1990.mb3.
Der volle Inhalt der QuelleMehuys, D., D. F. Welch, R. G. Waarts, R. Parke, A. Hardy und W. Streifer. „Modal analysis of monolithically integrated, surface-emitting, master oscillator power amplifiers“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.mk4.
Der volle Inhalt der QuelleKoo, Joonhoi, Dong Joon Kim, Seung Won Jun, Hwanseong Jeong, Kwanghyun Lee, Jung Hwan Lee und Minsik Jo. „Narrow Linewidth, Filtered-Superfluorescent High Power Source with Linear Polarization“. In Advanced Solid State Lasers. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/assl.2022.jm4a.2.
Der volle Inhalt der QuelleMito, Ikuo, und Kenji Endo. „1.48μm and 0.98μm High-Power Laser Diodes for Erbium-Doped Fiber Amplifiers“. In Optical Amplifiers and Their Applications. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oaa.1991.wc1.
Der volle Inhalt der QuelleSchuster, Gregory L., und John R. Andrews. „Efficient coherent beam combining of multiple high-power AlGaAs amplifiers“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.mpp3.
Der volle Inhalt der QuelleAuge, J., B. Clesca, B. Biotteau, P. Bousselet, A. Dursin, C. Clergeaud, P. Kretzmeyer et al. „Repeaterless Transmission With 62.9 dB Power Budget Using A Highly Efficient Erbium-Doped Fiber Amplifier Module“. In Optical Amplifiers and Their Applications. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oaa.1990.tuc3.
Der volle Inhalt der QuelleWay, W. I., A. C. Von Lehman, M. J. Andrejco, M. A. Saifi und C. Lin. „Noise Figure of a Gain-Saturated Erbium-Doped Fiber Amplifier Pumped at 980 nm“. In Optical Amplifiers and Their Applications. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oaa.1990.tub3.
Der volle Inhalt der QuelleGiles, C. Randy. „Signal propagation and noise accumulation in amplified lightwave systems“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.tha4.
Der volle Inhalt der QuelleMehuys, David G., Ross Parke, Jo S. Major, Steven O'Brien, Robert G. Waarts, Derek Nam und David F. Welch. „High-power coherent semiconductor phased arrays and power amplifiers“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.tugg3.
Der volle Inhalt der QuelleChung, Y. C., J. M. Wiesenfeld, G. Raybon und U. Koren. „Intermodulation Distortion in a Multiple-Quantum-Well Semiconductor Amplifier“. In Optical Amplifiers and Their Applications. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oaa.1990.tue5.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Power amplifiers"
Luhmann, N. C., und Jr. Stable High-Power Harmonic Gyro-Amplifiers. Fort Belvoir, VA: Defense Technical Information Center, September 1994. http://dx.doi.org/10.21236/ada293697.
Der volle Inhalt der QuelleRutledge, David. High-Efficiency, Class-E RF Power Amplifiers. Fort Belvoir, VA: Defense Technical Information Center, April 2001. http://dx.doi.org/10.21236/ada393787.
Der volle Inhalt der QuelleYu, Charles X., Steven J. Augst, Shawn M. Redmond, Kris C. Goldizen, Daniel V. Murphy, Antonio Sanchez und Tso Y. Fan. Coherent Combining of High-Power Yb Fiber Amplifiers. Fort Belvoir, VA: Defense Technical Information Center, April 2011. http://dx.doi.org/10.21236/ada569704.
Der volle Inhalt der QuellePenn, John E. Monolithic Microwave Integrated Circuits (MMIC) Broadband Power Amplifiers. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2012. http://dx.doi.org/10.21236/ada571906.
Der volle Inhalt der QuelleAl-kanan, Haider. Power Efficiency Enhancement and Linearization Techniques for Power Amplifiers in Wireless Communications. Portland State University Library, März 2020. http://dx.doi.org/10.15760/etd.7287.
Der volle Inhalt der QuelleRodwell, Mark, und Umesh K. Mishra. High Power Broadband Amplifiers for 1-18 GHz Naval Radar. Fort Belvoir, VA: Defense Technical Information Center, Juni 2002. http://dx.doi.org/10.21236/ada403109.
Der volle Inhalt der QuelleOzalas, Matthew T. High Efficiency Class-F MMIC Power Amplifiers at Ku-Band. Fort Belvoir, VA: Defense Technical Information Center, Januar 2005. http://dx.doi.org/10.21236/ada456277.
Der volle Inhalt der QuellePenn, John E. Monolithic Microwave Integrated Circuits (MMIC) Broadband Power Amplifiers (Part 2). Fort Belvoir, VA: Defense Technical Information Center, Juli 2013. http://dx.doi.org/10.21236/ada585852.
Der volle Inhalt der QuelleElliot McCrory and Robert C. Webber. Analysis of Lifetime Data for the Linac 201 MHz Power Amplifiers. Office of Scientific and Technical Information (OSTI), Juli 2002. http://dx.doi.org/10.2172/796231.
Der volle Inhalt der QuelleNelson, Brian A. ICC Experiment Performance Improvement through Advanced Feedback Controllers for High-Power Low-Cost Switching Power Amplifiers. US: Nelson Scientific Explorations L.L.C., Mountlake Terrace WA, Oktober 2006. http://dx.doi.org/10.2172/893760.
Der volle Inhalt der Quelle