Dissertationen zum Thema „Porous Media Combustion“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-32 Dissertationen für die Forschung zum Thema "Porous Media Combustion" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Lawson, D. A. „Combustion in porous media“. Thesis, University of Oxford, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.354839.
Der volle Inhalt der QuelleByrne, Helen M. „Modelling combustion zones in porous media“. Thesis, University of Oxford, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.291095.
Der volle Inhalt der QuelleOchi, Fumihiro, und Kazuhiro Yamamoto. „Soot accumulation and combustion in porous media“. Maney Publishing, 2006. http://hdl.handle.net/2237/20054.
Der volle Inhalt der QuelleTakada, Naoki, und Kazuhiro Yamamoto. „LB simulation on soot combustion in porous media“. Elsevier, 2006. http://hdl.handle.net/2237/20044.
Der volle Inhalt der QuellePedersen-Mjaanes, Haakon. „Hydrogen production from rich combustion inside porous media“. Thesis, University of Cambridge, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.614189.
Der volle Inhalt der QuelleHenneke, Michael Ray. „Simulation of transient combustion within porous inert media /“. Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.
Der volle Inhalt der QuelleZANONI, M. A. B. „Smoldering Combustion In Porous Media Kinetic Models For Numerical Simulations“. Universidade Federal do Espírito Santo, 2012. http://repositorio.ufes.br/handle/10/4161.
Der volle Inhalt der QuelleTecnologias avançadas para a geração de energia usando combustíveis não convencionais xisto betuminoso e seu semi-coque, areias betuminosas, petróleo extra-pesado e biomassa proveniente de resíduos sólidos urbanos e de lodo de esgoto - têm em comum processos termoquímicos compostos de complexas reações químicas. Este trabalho trata da formulação e otimização de mecanismos químicos normalmente envolvidos na pirólise do xisto betuminoso e na combustão do xisto betuminoso e seu semi-coque. Problemas inversos (usando o algoritmo de Levenberg-Marquardt) foram empregados para minimizar o erro entre os valores estimados e os dados de termogravimétria para os mecanismos de reação de 3 passos para a pirólise do xisto betuminos, e mecanismos de 4 e 3 passos para o xisto betuminoso e seu semi-coque, respectivamente. Os parâmetros cinéticos, tais como ordem de reação, fator pré-exponencial, energia de ativação e os coeficientes estequiométricos que afetam a secagem, as reações de oxidação, pirólise e descarbonatação foram estimadas com sucesso. Além disso, os erros estatísticos e residuais foram avaliados, resultando em um valor razoável para todas as estimativas e o mecanismo cinético proposto e estimado para a combustão do semi-coque foi aplicado em um código em meios porosos. Um estudo paramétrico entre o perfil de temperatura e a velocidade do ar, e o perfil de temperatura e a concentração de carbono fixo foi desenvolvido. Este estudo mostra que o perfil de temperatura é extremamente influenciado por estes parâmetros, confirmando que a propagação da frente é controlada pela injeção de O2. Palavras-chave: Xisto Betuminoso, Semi-Coque, Pirólise, Combustão, Estimação de Parâmetros, Problemas Inversos, Levenberg-Marquardt, Meios Porosos.
Pastore, Andrea. „Syngas production from heavy liquid fuel reforming in inert porous media“. Thesis, University of Cambridge, 2010. https://www.repository.cam.ac.uk/handle/1810/237704.
Der volle Inhalt der QuelleKoester, Garold Eugene. „Propagation of wave-like unstabilized combustion fronts in inert porous media /“. The Ohio State University, 1997. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487943341527809.
Der volle Inhalt der QuelleMbarawa, M., NA Kakutkina und Korzhavin AA. „Experimental investigation on peculiarities of the filtration combustion of the gaseous fuel-air mixtures in the porous inertia media“. Journal of Mechanical Science and Technology, 2007. http://encore.tut.ac.za/iii/cpro/DigitalItemViewPage.external?sp=1000859.
Der volle Inhalt der QuelleDaido, S., H. Yamashita, S. Oohori und K. Yamamoto. „Simulation on soot deposition and combustion in diesel particulate filter“. Elsevier, 2009. http://hdl.handle.net/2237/20033.
Der volle Inhalt der QuelleCoutinho, José Eduardo Arruda. „Combustion in porous media with local thermal non-equilibrium and radiation models“. Instituto Tecnológico de Aeronáutica, 2012. http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2186.
Der volle Inhalt der QuellePironi, Paolo. „Smouldering combustion of organic liquids in porous media for remediating NAPL-contaminated soils“. Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/3222.
Der volle Inhalt der QuelleMueller, Kyle Thomas. „Super-adiabatic combustion in porous media with catalytic enhancement for thermoelectric power conversion“. Master's thesis, University of Central Florida, 2011. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4809.
Der volle Inhalt der QuelleID: 030646196; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Thesis (M.S.A.E.)--University of Central Florida, 2011.; Includes bibliographical references (p. 105-119).
M.S.A.E.
Masters
Mechanical and Aerospace Engineering
Engineering and Computer Science
Aerospace Engineering; Thermofluid Aerodynamic Systems Track
Lovett, Sean David. „Adaptive mesh refinement for thermal flows and in-situ combustion in porous media“. Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648210.
Der volle Inhalt der QuelleMisawa, Masaki, Naoki Takada und Kazuhiro Yamamoto. „Combustion simulation with Lattice Boltzmann method in a three-dimensional porous structure“. Elsevier, 2005. http://hdl.handle.net/2237/20031.
Der volle Inhalt der QuelleLapene, Alexandre. „Etude expérimentale et numérique de la combustion in-situ d’huiles lourdes“. Thesis, Toulouse, INPT, 2010. http://www.theses.fr/2010INPT0014/document.
Der volle Inhalt der QuelleThe study of this PhD, realized jointly with IMFT and TOTAL, deals with modeling of in-situ combustion applied to a Venezuelan heavy oil. It has begun with a relatively simple observation: even if the process has been extensively studied since some decades, we cannot correctly model it. Experiment data provided by lab scale experiments (combustion tubes) mismatches numerical results obtained from commercial thermal simulator, especially for wet experiments. The need to better understand the process related to this issue forced us to explore multiple tracks for various scientific fields. Thus, one can cite: • The chemistry and methods of reduction of reactive mechanisms. • The thermodynamic description of the heavy oil and the calculations of three-phase equilibrium. • Heat and mass transport in multiphase, reactive and miscible porous medium. • Mathematical and numerical design of a full model. The problem exceedingly complex can find a complete and consistent answer if one takes into account the whole mechanisms and links between them. We have followed this way in order to determine a robust reactive scheme using both theoretical numerical and experimental developments. A whole set of kinetic cell manipulations was conducted to better understand and discriminate the effects of water on chemistry on a certain type of heavy oils. New interactions and effects on steam on heavy oil combustion have been discovered and studied. These manipulations, supplemented by a set of some combustion tubes provide a large set of experimental data. This will compose our base case that we will try to match later using some new tools devised during this study. To model kinetic experiments, we firstly developed a new simulation tool based on a compositional description and a full equation of state formulation. Equilibrium calculation is made by a two-phase flash. To determine consistent kinetic parameters, we used a genetic algorithm coupled with the new tool. Finally, in order to validate the kinetic model and simulate combustion tube experiment, a new threephase compositional simulator has been developed. It is especially fitted to take into account characteristic of the experimental device. Three-phase equilibrium calculation is computed by a new free-water
YAMAMOTO, Kazuhiro, Osamu TAKAGI, Koji TSUNEYOSHI, 和弘 山本, 修. 高木 und 孝治 常吉. „DPFの初期PM捕集性能に対する表面粗さの影響“. 一般社団法人 日本機械学会, 2010. http://hdl.handle.net/2237/19810.
Der volle Inhalt der QuelleYAMAMOTO, Kazuhiro, Shingo SATAKE, Hiroshi YAMASHITA, Akira OBUCHI und Junko UCHISAWA. „Simulation on Soot Oxidation with NO2 and O2 in a Diesel Particulate Filter“. The Japan Society of Mechanical Engineers, 2007. http://hdl.handle.net/2237/9385.
Der volle Inhalt der QuelleNakamura, Masamichi, und Kazuhiro Yamamoto. „Simulation on Flow and Heat Transfer in Diesel Particulate Filter“. ASME (American Society of Mechanical Engineers), 2011. http://hdl.handle.net/2237/19976.
Der volle Inhalt der QuelleGeiger, Derek M. „AN EXPERIMENT ON INTEGRATED THERMAL MANAGEMENT USING METALLIC FOAM“. DigitalCommons@CalPoly, 2009. https://digitalcommons.calpoly.edu/theses/75.
Der volle Inhalt der QuelleFIlho, Iramilson Maia da Silva. „ProduÃÃo de Filmes Finos de SnO2 pelo MÃtodo de Spray PirÃlise Utilizando um Forno a GÃs Natural com CombustÃo de FiltraÃÃo“. Universidade Federal do CearÃ, 2012. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=7255.
Der volle Inhalt der QuelleO diÃxido de estanho (SnO2) em forma de filme fino pode ser produzido com grande transparÃncia à luz visÃvel e boa condutividade elÃtrica. Os filmes finos de SnO2 possuem muitas aplicaÃÃes tecnolÃgicas na indÃstria, principalmente em aparelhos eletrÃnicos que utilizam display de visualizaÃÃo, como em dispositivos em laboratÃrios de pesquisa. Uma das aplicaÃÃes mais promissoras à a sua utilizaÃÃo como Ãxido condutor transparente em cÃlulas solares fotovoltaicas. Devido as suas caracterÃsticas de transparÃncia Ãtica no espectro visÃvel e baixa resistividade, os filmes finos de diÃxidos de estanho sÃo empregados como componente constituinte de cÃlulas solares fotovoltaicas. A proposta deste trabalho à a utilizaÃÃo de um forno, que utiliza a tecnologia de CombustÃo em Meios Porosos para fabricaÃÃo de filmes finos de diÃxido de estanho sobre substratos de vidro, utilizando a tÃcnica de spray pirÃlise. O forno utilizado nesse projeto possui uma cÃmara, onde os filmes de SnO2 sÃo sinterizados, e uma antecÃmara, onde a soluÃÃo precursora dos filmes à aplicada sobre substratos de vidro. Uma pistola spray foi adaptada ao forno, acoplada a antecÃmara, para a aspersÃo da soluÃÃo de estanho sobre substratos de vidro. Foi utilizada a tÃcnica de dopagem dos filmes finos com flÃor com o intuito de reduzir a resistÃncia à corrente elÃtrica. Os filmes finos de SnO2 foram caracterizados em relaÃÃo a transmitÃncia Ãtica ao espectro visÃvel e em relaÃÃo a resistÃncia elÃtrica. TambÃm foram realizadas medidas de difraÃÃo de raios-X e microscopia de forÃa atÃmica para a revelaÃÃo e estudo da estrutura dos filmes de Ãxido de estanho.
The tin dioxide (SnO2) as thin film can be produce with high transparency to visible light and good electrical conductivity. The SnO2 thin films have many technological applications in industry, mainly in electronic devices that use preview display, such as devices in research laboratories. One of the most promising applications is its use as a transparent conductive oxide in photovoltaic solar cells. Due to its transparency in the visible spectrum and low resistivity, the films of tin dioxide are used as a constituent component of photovoltaic solar cells. The present work aims to use a heat furnace, which uses combustion in porous media technology for the production of thin films of tin dioxide (SnO2) on glass substrates, using the technique of spray pyrolysis. The furnace used has a chamber where the films of SnO2 are sintered and a pre-chamber, where the precursor solution is applied films on glass substrates. Spray gun was adapted to furnace and coupled to the antechamber for the spraying of the solution of tin on glass substrates. The technique of doping thin films of Fluoride was used in order to reduce the resistance to electrical current. The thin films of SnO2 was characterized by their optical transmittance spectrum and electrical resistance. The structure of films of tin oxide was study by x-ray diffraction and atomic force microscopy.
Flores-Montoya, Enrique. „Etude expérimentale de la stabilisation des flammes dans des brûleurs poreux : application des diagnostics optiques dans des géométries imprimées en 3D“. Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSEP087.
Der volle Inhalt der QuellePorous Media Burners (PMBs) are a combustion technology based on heat recirculation where a flame is stabilized within the cavities of an inert porous matrix. In PMBs, heat is transferred upstream from the burned to the unburned gas through the solid matrix yielding a preheating of the reactants.This increases their burning rate allowing for more compact combustion devices and the operation beyond conventional flammability limits. As a result, the stabilization of flames at ultra-lean equivalence ratios is possible, with the subsequent reduction of the flame temperature and NOx emissions. In these burners, a substantial fraction of the power is radiated by the hot solid phase, with radiated power fractions ranging between 20-30 %. This, together with their elevated efficiency and low pollutant emissions, has motivated their commercial use in various infrared heating applications.In the past years, PMBs have received renewed interest owing to their potential as fuel flexible burners. Their ability to stabilize flames over a wide range of burning rates makes them promising candidates to handle the uneven flame properties of hydrogen and hydrocarbon fuels.The mechanism of heat recirculation in PMBs is well understood. However, there is still limited knowledge about many pore-scale phenomena that have a critical impact on the macroscopic behavior of the system and its performance.Advanced nonintrusive diagnostics could be used to study local flame stabilization mechanisms and improve current models. However, experimental measurements in PMBs are hindered by the lack of optical access to the interior of the porous matrix.This dissertation presents an experimental study on porous media combustion and is devoted to the application of optical diagnostics. Optically accessible PMBs are produced by combining computer-defined topologies with additive manufacturing techniques. This methodology provides an extensive optical access in a 3D burner configuration without altering the matrix structure. Optical access is leveraged to apply CH* chemiluminescence, Mie-scattering imaging and micro PIV. Topology tailoring is exploited to analyze the influence of the geometrical parameters of the porous matrix. Direct flame visualization enables the tracking of the reaction region as a function of the operating conditions, which can be used for model validation. The present results bring to light several limitations of current low order models and highlight the influence of the pore size on flame stabilization. Flame-front tracking is also used to investigate the effect of H2-enrichment on the behavior of the flame. This technique reveals different stabilization trends in H2-enriched flames that are not well retrieved by current models. Mie-scattering permits the quantification of the re-equilibration distance and the analysis of the flame shape. Micro PIV measurements show the influence of the topology on the interstitial flow and on the contribution of hydrodynamic effects to flame stabilization.This PhD seeks to open new paths for the application of non-intrusive diagnostics in PMBs and to improve the current understanding of flame stabilization mechanisms
Zavala, Rosmery Violeta Quispe. „Ondas viajantes para combustão in-situ com efeito de perdas térmicas em meios porosos“. Universidade Federal de Juiz de Fora (UFJF), 2018. https://repositorio.ufjf.br/jspui/handle/ufjf/8003.
Der volle Inhalt der QuelleApproved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-11-23T11:06:29Z (GMT) No. of bitstreams: 1 rosmeryvioletaquispezavala.pdf: 2260352 bytes, checksum: 5065e53fcdfaaf4c24879ca0ea89cd54 (MD5)
Made available in DSpace on 2018-11-23T11:06:29Z (GMT). No. of bitstreams: 1 rosmeryvioletaquispezavala.pdf: 2260352 bytes, checksum: 5065e53fcdfaaf4c24879ca0ea89cd54 (MD5) Previous issue date: 2018-08-13
Apresentamos um modelo para a injeção de ar em um meio poroso que contém combustível sólido levando em conta as perdas térmicas para rocha circundante. Em trabalhos anteriores, o modelo foi simplificado e todas as sequências de ondas para a solução de problemas de Riemann foram obtidas sem levar em conta as perdas térmicas. Nesse trabalho, é feito um primeiro passo para entender o efeito das perdas de calor, que são importantes especialmente em experimentos de laboratório. Para provar a existência e unicidade da solução de ondas viajantes, os efeitos de difusão e a dependência da densidade do gás na temperatura são desconsiderados. Também são apresentadas simulações numéricas que validam os resultados obtidos, bem como simulações numéricas para um sistema mais geral que considera termos difusivos. Por fim são comparadas as soluções numéricas para ambos sistemas e um exemplo numérico com valores típicos dos parâmetros para um modelo de combustão é apresentado.
We present a model for the injection of air into an underground porous medium that contains a solid fuel. In previous works the model was simplified and all wave sequences for the Riemann problem solution were obtained without taking into account thermal losses to the surrounding rock. In that work the first step was made to understand the effect of heat losses, which are important especially in laboratory experiments. In order to prove of the existence and uniqueness of the traveling wave solution, diffusion effects and the dependence of gas density on temperature were disregarded. We will also present numerical simulations that validate the results obtained, as well as numerical simulations for a more general system that considers diffusive terms. Furthermore, we will compare the numerical solutions for both systems and a numerical example with typical values of the parameters for a combustion model is presented.
Pereira, Weslley da Silva. „Validação numérica de estimativas analíticas aplicadas à combustão em meios porosos“. Universidade Federal de Juiz de Fora, 2015. https://repositorio.ufjf.br/jspui/handle/ufjf/402.
Der volle Inhalt der QuelleApproved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-01-25T17:29:23Z (GMT) No. of bitstreams: 1 weslleydasilvapereira.pdf: 6406997 bytes, checksum: 17a5ee95515b6ad53c2e29db478c6e81 (MD5)
Made available in DSpace on 2016-01-25T17:29:23Z (GMT). No. of bitstreams: 1 weslleydasilvapereira.pdf: 6406997 bytes, checksum: 17a5ee95515b6ad53c2e29db478c6e81 (MD5) Previous issue date: 2015-03-23
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
É crescente o interesse na utilização de métodos térmicos para recuperação de óleo de média e alta viscosidade. Um desses métodos é a combustão in situ, que consiste na liberação de calor no interior do reservatório através da combustão do ar injetado. As componentes mais pesadas do óleo atuam como combustível para as reações exotérmicas e o calor gerado reduz a viscosidade do óleo, estimulando o fluxo em direção aos poços de produção. Os modelos matemáticos para este método de recuperação em geral são complexos. Portanto, a obtenção de soluções analíticas para tais modelos é inviável, sendo necessária a utilização de simulações computacionais. Diversos trabalhos apresentam estudos analíticos e numéricos de modelos unidimensionais para a combustão em meios porosos. Em trabalhos anteriores, estimativas analíticas para modelos unidimensionais foram obtidas. Neste trabalho, tais estimativas são ligeiramente generalizadas através da inclusão da pressão prevalecente. É proposto um modelo bidimensional para o processo de combustão in situ em meios porosos heterogêneos que considera pressão variável. Soluções numéricas são obtidas utilizando o método de elementos finitos para a discretização espacial, o esquema de diferenças finitas de Crank-Nicolson para discretização no tempo e o método de Newton para resolução das equações não lineares resultantes. Estimativas analíticas para a temperatura e velocidade da onda de combustão são obtidas através de um modelo unidimensional simplificado. Tais estimativas são validadas com sucesso para o modelo geral através das simulações. Uma outra simplificação unidimensional do modelo geral é simulada numericamente através de duas abordagens: a primeira é similar à utilizada para a solução do modelo geral; e a segunda é escrita como um problema de complementaridade. Os problemas de complementaridade não-linear são resolvidos pelo algoritmo FDA-NCP. As duas abordagens numéricas utilizadas são comparadas com uma estimativa analítica para a onda térmica e mostram bons resultados.
There is a growing interest in using thermal methods for the recovery of medium and high viscosity oil. One of these methods is the in-situ combustion, which consists in release heat within the reservoir through combustion of the injected air. The heavier oil components are used as fuel for exothermic reactions and the generated heat reduces the oil viscosity, stimulating the flow towards the production well. In general, the mathematical models for this recovery method are complex. Therefore, the analytical solutions for such models are impossible, requiring numerical simulations. Several works present analytical and numerical studies of one-dimensional models for combustion in porous media. In previous works analytical estimates for one dimensional models were obtained. Here these estimates are slightly generalized by including the prevailing pressure. We propose a two-dimensional model for the in-situ combustion process in heterogeneous porous media, considering variable pressure. Numerical results are obtained using the finite element method for spatial discretization, Crank-Nicolson finite difference scheme for time discretization and Newton’s method for the arising nonlinear equations. Analytical estimates for combustion wave speed and combustion wave temperature are obtained using one-dimensional simplified model. These estimates are successfully validated in the general model through the simulation results. Another one-dimensional simplification of the general model is numerically simulated by two approaches: the first is similar to the one previously described; and the second one is written as a complementarity problem. The arising nonlinear complementarity problems are solved by the FDA-NCP algorithm. Both numerical approaches are compared to the analytical estimate for the thermal wave, showing good agreement.
Ferreira, PlÃcido GonÃalves. „Effects of carbon dioxide from biogas in filtration combustion“. Universidade Federal do CearÃ, 2015. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=15117.
Der volle Inhalt der QuelleThe use of biogas, with high concentrations of carbon dioxide (CO2) in its composition, in thermal systems of conventional combustion can result in combustion instabilities, leading to a decrease of the flame front propagation velocity, resulting even to the flame extinction. In addition, this contaminant can increase greenhouse gas levels in the exhaust, such as carbon monoxide (CO), unburned hydrocarbons (UHC), nitrogen oxides (NOx) among others. Thus, this research aims to demonstrate the effectiveness of "Filtration Combustion" (FC) to deal with fuels of low heat content, such as biogas. CF is a non-conventional technology capable of producing ultra-low emissions of CO, HC and NOx. The experimental apparatus used in this research consists of a porous burner constituted of ceramic spheres (alumina) that fill the combustion chamber, where heat exchangers are inserted at the porous matrix ends. The FC allows even the application of a reciprocating gas flow system, which periodically switches the direction of the gas flow in the chamber. The reciprocal filtration combustion allows the operation with several fuels and providing a stable combustion process with temperature distribution on trapezoidal profile, with temperature peaks between 1300 and 1600 K. In this context, the present experimental study tries to identify and to analyze the effects of carbon dioxide in FC, which covers energy extraction efficiency, emissions, reaction stability, and flammability limits using several air-fuel mixtures, altering both the CO2 concentration in the biogas composition as the equivalence ratio (ER), in which the technical methane is taken as the reference gas. The results have pointed out significant benefits of the reversal on the combustion process, allowing operation in a wide equivalence ratio range (0.1 <Ф <1.0), and achieving energy extraction efficiencies above 90%, with ultra-low CO and NOx emissions (below 1 ppm). However, when the burner operates on only flow direction, it is possible to realize a drastic reduction of the flammability limit, as the CO2 content in the biogas composition is increased.
A utilizaÃÃo do biogÃs, com elevadas concentraÃÃes de diÃxido de carbono (CO2) em sua composiÃÃo, em sistemas tÃrmicos de combustÃo convencionais pode resultar em instabilidades na reaÃÃo, levando a uma diminuiÃÃo da velocidade de propagaÃÃo da frente de chama (onda de combustÃo), ocasionando inclusive a sua extinÃÃo. AlÃm disso, este contaminante pode aumentar os Ãndices de gases poluentes na exaustÃo, tais como: monÃxido de carbono (CO), hidrocarbonetos nÃo queimados (HC), Ãxidos de nitrogÃnio (NOx), dentre outros. Por esta razÃo, esta pesquisa tem como objetivo demonstrar a eficÃcia da "CombustÃo de FiltraÃÃo" (CF) em lidar com os combustÃveis de baixo poder calorÃfico, como o biogÃs. CF à uma tecnologia nÃo-convencional capaz de produzir emissÃes ultrabaixas de CO, HC e NOx. O aparato experimental empregado nessa pesquisa consistiu de um queimador poroso, constituÃdo de esferas cerÃmicas (alumina) que preenchem a cÃmara de combustÃo, onde trocadores de calor estÃo inseridos nas extremidades dessa matriz porosa. A CF possibilitou, inclusive, a aplicaÃÃo de um sistema de escoamento recÃproco, que alternou periodicamente a direÃÃo do escoamento dos gases na cÃmara. A combustÃo de filtraÃÃo recÃproca permitiu a operaÃÃo com diversos combustÃveis e proporciona um processo de combustÃo estÃvel com a distribuiÃÃo de temperatura em perfil trapezoidal, com picos de temperatura entre 1300 e 1600 K. Neste contexto, o presente estudo experimental buscou identificar e analisar os efeitos do diÃxido de carbono na CF, o que engloba eficiÃncia de extraÃÃo de energia, emissÃes, estabilidade da reaÃÃo, e limites de inflamabilidade, utilizando vÃrias misturas ar-combustÃvel, alterando tanto a concentraÃÃo de CO2 na composiÃÃo do biogÃs como a razÃo de equivalÃncia (RE), tendo como gÃs de referÃncia o metano tÃcnico. Os resultados apontaram benefÃcios significativos da reversÃo sobre o processo de combustÃo, permitindo a operaÃÃo em uma ampla faixa de razÃo de equivalÃncia (0,1<Ф<1,0), e alcanÃando uma eficiÃncia de extraÃÃo de energia acima de 90%, com emissÃes ultrabaixas de CO e NOx (abaixo de 1 ppm). Em contrapartida, quando o queimador operou em apenas um sentido do escoamento, foi possÃvel perceber uma reduÃÃo no limite de inflamabilidade à medida que foi incrementado o teor de CO2 na composiÃÃo do biogÃs.
Psimas, Michael J. „Experimental and numerical investigation of heat and mass transfer due to pulse combustor jet impingement“. Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/33863.
Der volle Inhalt der QuelleChing-HanLin und 林京翰. „Study of Diffusion Combustion with Hydrogen Using Porous Media Burner“. Thesis, 2012. http://ndltd.ncl.edu.tw/handle/08751050243134028048.
Der volle Inhalt der Quelle國立成功大學
航空太空工程學系碩博士班
100
This research investigates the characteristic of hydrogen diffusion flame and the practicability of the reverse water gas shift reaction in the porous media burner. Experimental parameters included the flow rate of the fuel (3~8 L/min), equivalence ratio (0.25~2), stacked number (1~4 piece), the pore size of the porous media (15, 30 PPI), and the H2/CO2 ratio (1, 3, 5). The measurements of the temperature variation of axial direction of burner and the radial direction of the interface between two porous media, the CO2 conversion efficiency were carried out. Moreover, the flame front in the porous media burner was observed to understand the influence of porous media on the flame characteristic. It was found that the operable range of the hydrogen diffusion flame in the porous media burner was larger than that of the premixed flame. The temperature becomes higher when the equivalence ratio (0.25~2) was more close to the lean-burn conditions. However, effects of hydrogen flow rate were not significant when the air flow rate was fixed. From the test of the reverse water gas shift reaction, decreasing the hydrogen flow rate or increasing the H2/CO2 ratio and the equivalence ratio increased the CO2 conversion efficiency. The highest CO2 conversion efficiency was 31.6% when hydrogen flow rate was 4 L/min and H2/CO2 ratio was 5. The result shows that it can be found at some particular conditions of the hydrogen diffusion flame with porous media burner, but it needs to be further studied in order to apply it to a present combustion system.
Chang, Hung-Ho, und 張宏禾. „Effects of catalysis on premixed combustion in a porous media burner“. Thesis, 2003. http://ndltd.ncl.edu.tw/handle/04551312762349397737.
Der volle Inhalt der Quelle國立中央大學
機械工程研究所
91
The combustion characteristics of premixed hydrogen- methane-air mixture in a porous media burner with catalysts are studied experimentally. La2O3 and MgO are used as the catalysts in this work. They are supported on highly porous SiC and Al2O3 forms. Flow rates are controlled by mass flow meters. Gas temperature within the burner and CO, NOX, THC emissions are monitored throughout the experiments. Results show that the flame temperature is increased by adding catalysts due to the increased reaction rate. Flame positions are different for different material burners. For Al2O3 porous burners, flame is usually stabilized in the middle of the burner. But for SiC burners, flame is stabilized at near the inlet due to higher thermal conductivity of SiC. In addition, the stable region is wider for SiC burner and the flame temperature is higher due to better preheating effects. Addition of hydrogen in the methane-air mixture does not change the flame temperature very much. Although hydrogen does promote chemical reaction, but it also has higher thermal conductivity and cooling by convection is enhanced due to increase flame speed. For burners without catalysts, CO emission increases with the equivalence ratio and flame speed slightly because of shorter residence time. But the concentrations are all less than 15ppm. For burners with catalysts, the CO emissions are all reduced to below 5ppm. The catalysts do promote CO to CO2 conversion. On the other hands, NOX emissions are all in the range of 10-15 ppm.
Yi-ChengTasi und 蔡易呈. „The Study on Combustion Characteristics of Premixed Propane-Air Flame in a Porous Media Burner“. Thesis, 2013. http://ndltd.ncl.edu.tw/handle/40780458667632550047.
Der volle Inhalt der Quelle國立成功大學
航空太空工程學系碩博士班
101
In this study, propane is taken as fuel in the investigation of the combustion of a self-designed porous media burner. Three porous media, OB-SiC with a pores size distribution of 15 PPI, Al2O3 with pores size distribution of 15 PPI and 30 PPI were used in this work. The observation of the axial temperature distribution and the analysis of the exhaust gas were carried out at different fuel flow rates, equivalence ratios and addition of hydrogen. Experimental results show that the maximum temperature of propane-air flame can be maintained, and that isn’t sensitive to the equivalence ratio. Meanwhile, the concentration analysis of exhaust discloses that CO, HC and NOx concentrations are related with the equivalence ratio, position of the high temperature area and the heat release rate of a self-made porous media burner. From the experiment of propane-air flame mixed with hydrogen, it can be seen that not only the range of operation, but also the emission of CO and HC is improved under proper operational parameters. Using Al2O3 as both the upstream and downstream porous media at the fuel flow rate of 1.25 L/min and the equivalence ratio of 0.6. Under those conditions, interior combustion can be produced, and a stable flame temperature up to 1200 oC at the interface of two porous media can be achieved. In addition, a CO concentration of 16.08 ppm, a NOx concentration of 24 ppm and a HC concentration of almost zero were measured. It is concluded that a combustion environment of high-temperature operation and low-pollution emission can be obtained using the porous media combustor.
Siou-ShengSu und 蘇脩聖. „Experimental Study of Combustion Characteristics and NO Formation Mechanism under Different Hydrogen Flame Modes with Heat Transfer Mechanisms in a Porous Media Combustor“. Thesis, 2016. http://ndltd.ncl.edu.tw/handle/86956951446709587963.
Der volle Inhalt der Quelle國立成功大學
機械工程學系
104
This study investigated the heat recovery rates of hydrogen flame modes in porous medium combustion. The porous medium was oxide-bonded silicon carbide (OB-SiC), aluminum oxide (Al2O3) or zirconia (ZrO2) with 60 or 30 PPI. The results indicated that the reaction temperature of a flame mode was controlled by the equivalence ratio (Flame velocity), thermal load and solid medium thermal properties (k and CP). The operation region of the flame modes was controlled by the equivalence ratio and dimensionless velocity (V*). Under ultra-lean conditions (=0.2-0.25), the flame was blown out when the dimensionless velocity was above 4.5 for OB-SiC and Al2O3 settings. In contrast no blow out occurred for the ZrO2 setting and under a high equivalence ratio (>0.4), and the flame mode was a conical flame when the dimensionless velocity was above unity. The heat recovery mechanism of surface and interior combustion was based on the conduction and radiation of the porous medium. The dimensionless temperature (*) is defined as the ratio of the reaction temperature over the adiabatic flame temperature. When the dimensionless temperature was unity, the reaction temperature approached the adiabatic flame temperature. Under interior combustion, the maximum dimensionless temperature was 0.994 for the OB-SiC (=0.3) setting. Furthermore, the maximum dimensionless temperature was 0.942 for Al2O3 and 0.969 for ZrO2 under operation at =0.3. The heat recovery rate of hydrogen combustion under surface and interior combustion was thus higher than that of the conical flame mode.
Terracciano, Anthony. „Design and Development of Heterogenous Combustion Systems for Lean Burn Applications“. Master's thesis, 2014. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/6201.
Der volle Inhalt der QuelleM.S.M.E.
Masters
Mechanical and Aerospace Engineering
Engineering and Computer Science
Mechanical Engineering; Thermo-Fluids Track