Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Porous jump“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Porous jump" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Porous jump"
Avramenko, A. A., N. P. Dmitrenko, Yu Yu Kovetska und E. A. Kondratieva. „FEATURES OF HEAT TRANSFER IN A FLAT POROUS MICROCHANNEL“. Thermophysics and Thermal Power Engineering 42, Nr. 1 (12.04.2020): 12–18. http://dx.doi.org/10.31472/ttpe.1.2020.1.
Der volle Inhalt der QuelleLi, Hong Hai, und Yang Yang Cheng. „Effect of Porous-Jump Model Parameters on Membrane Flux Prediction“. Advanced Materials Research 734-737 (August 2013): 2210–13. http://dx.doi.org/10.4028/www.scientific.net/amr.734-737.2210.
Der volle Inhalt der QuelleChen, Ming-Da, und Wang-Long Li. „Creeping Flow Relative to a Porous Spherical Shell“. Journal of Mechanics 16, Nr. 3 (September 2000): 137–43. http://dx.doi.org/10.1017/s1727719100001799.
Der volle Inhalt der QuelleQiu, Li, Xiao-Dong Chen, Rui Wang und De-Peng Wang. „Macro fluid analysis of laminated fabric permeability“. Thermal Science 20, Nr. 3 (2016): 835–38. http://dx.doi.org/10.2298/tsci1603835q.
Der volle Inhalt der QuelleLiu, Fang, und Bao Ming Chen. „Natural Convection in a Cavity Partially Filled with a Vertical Porous Medium“. Advanced Materials Research 321 (August 2011): 15–18. http://dx.doi.org/10.4028/www.scientific.net/amr.321.15.
Der volle Inhalt der QuelleZhou, Guo Li, und Zhen Ting Hou. „Stochastic generalized porous media equations with Lévy jump“. Acta Mathematica Sinica, English Series 27, Nr. 9 (15.08.2011): 1671–96. http://dx.doi.org/10.1007/s10114-011-9194-8.
Der volle Inhalt der QuelleZakirov, Timur R., und Maxim G. Khramchenkov. „Pore-scale investigation of the displacement fluid mechanics during two-phase flows in natural porous media under the dominance of capillary forces“. Georesursy 22, Nr. 1 (30.03.2020): 4–12. http://dx.doi.org/10.18599/grs.2020.1.4-12.
Der volle Inhalt der QuelleLi, Wang-Long. „Derivation of Modified Reynolds Equation—A Porous Media Model“. Journal of Tribology 121, Nr. 4 (01.10.1999): 823–29. http://dx.doi.org/10.1115/1.2834141.
Der volle Inhalt der QuelleAngot, Philippe. „Well-posed Stokes/Brinkman and Stokes/Darcy coupling revisited with new jump interface conditions“. ESAIM: Mathematical Modelling and Numerical Analysis 52, Nr. 5 (September 2018): 1875–911. http://dx.doi.org/10.1051/m2an/2017060.
Der volle Inhalt der QuelleZhanabaev, Z. Zh. „WIDTH OF ENERGY BAND GAP OF NANOPOROUS SEMICONDUCTOR FILMS“. Eurasian Physical Technical Journal 17, Nr. 2 (24.12.2020): 39–44. http://dx.doi.org/10.31489/2020no2/39-44.
Der volle Inhalt der QuelleDissertationen zum Thema "Porous jump"
Shin, Youn-Ok 1971. „Vapor and liquid equilibria in porous media“. Thesis, McGill University, 1999. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=21323.
Der volle Inhalt der QuelleKhan, Zafar Hayat. „Modelling moving evaporation fronts in porous media“. Thesis, University of Strathclyde, 2011. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=16850.
Der volle Inhalt der QuelleMakris, Aristidis. „The propagation of gaseous detonations in porous media“. Thesis, McGill University, 1993. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=41700.
Der volle Inhalt der QuelleForoutan, Rana. „Intake shape factors for transversely isotropic porous media“. Thesis, McGill University, 2002. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=29536.
Der volle Inhalt der QuelleThis study presents the application of computational procedures, based on finite element techniques, for the determination of the intake characteristics of a cylindrical intake located in a hydraulically transversely isotropic porous medium. Numerical results presented, illustrate the situations where the separate hydraulic conductivities can be estimated by a suitable alteration in the geometrical characteristics of the cylindrical intake. An approximate relationship is developed for estimation of the intake shape factor of cylindrical entry regions without a repeat of detailed finite element computations.
Narayan, Shankar B. „Measurement of diffusion and adsorption in porous adsorbents“. Thesis, McGill University, 1985. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=73968.
Der volle Inhalt der QuelleGalbraith, Graham H. „Heat and mass transfer within porous building materials“. Thesis, University of Strathclyde, 1992. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=21508.
Der volle Inhalt der QuelleCorson, Lindsey Thomson. „Geochemical effects on natural convection in porous media“. Thesis, University of Strathclyde, 2012. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=18197.
Der volle Inhalt der QuelleMcKenzie, Kimberly. „Skeletal distribution of bisphosphonate after elution from porous implants“. Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=86584.
Der volle Inhalt der QuelleA porous tantalum implant coated with hydroxyapatite and 14C-labelled zoledronic acid was implanted into the left femur of three dogs. After one year bone samples were taken from sites near to and distant from the implant. The amount of drug in each sample was determined using liquid scintillation counting and its distribution in peri-implant bone was additionally demonstrated using autoradiography.
All distant skeletal bone samples contained 11.8 ng/g zoledronic acid or less whereas bone immediately adjacent to the implant contained 388 ng/g. There was a 10-fold to 100-fold decrease in zoledronic acid content in bone just 1 or 2 cm away from the implant. Autoradiographs of thin bone-implant sections and bone sections revealed the highest concentration of zoledronic acid within and immediately adjacent to the implant. These data demonstrated for the first time that zoledronic acid eluted from an implant remained mainly local, with minimal systemic distribution.
L'attachement squelettique à un implant peut être amélioré en apportant de l'acide zoledronique de bisphosphonate de façon locale depuis l'implant. Le but de la présente étude était d'évaluer la distribution squelettique de l'acide zoledronique localement généré.
Un implant poreux de tantale enduit d'hydroxyapatite et d'acide 14C zoledronique a été implanté dans le fémur gauche de trois chiens. Après un an, plusieurs échantillons d'os, proches et éloignés de l'implant, ont été prélevés. La quantité de médicament dans chaque échantillon a ensuite été déterminée en utilisant un comptage par scintillation liquide; la distribution dans l'os autour de l'implant a aussi été demontré par autoradiographie.
Tous les échantillons prélevés loin de l'implant contenaient 11.8 ng/g d'acide zoledronique ou moins alors que ceux prélevés immédiatement à côté de l'implant contenaient 388 ng/g. Une diminution de 10 à 100 fois dans la teneur en acide zoledronique a été notée dans l'os situé seulement à 1 ou 2 cm de l'implant. Les autoradiographies des sections minces d'os-implant et des sections d'os ont indiqué que la concentration la plus élevée en acide zoledronique se situait dans l'implant et immédiatement à côté. Ces données démontrent, pour la première fois, que l'acide zoledronique élué d'un implant reste principalement local, avec une distribution systémique minimale.
Burel, Thomas. „Investigation of smooth contact angle treatment in porous media“. Thesis, University of Strathclyde, 2018. http://digitool.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=30826.
Der volle Inhalt der QuelleDu, Xiangdong 1967. „Scaling laws in permeability and thermoelasticity of random media“. Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=102973.
Der volle Inhalt der QuelleIn the first part of this work, the finite-size scaling trend to RVE of the Darcy law for Stokesian flow is studied for the case of random porous media, without invoking any periodic structure assumptions, but only assuming the microstructure's statistics to be spatially homogeneous and ergodic. By analogy to the existing methodology in thermomechanics of solid random media, the Hill-Mandel condition for the Darcy flow velocity and pressure gradient fields was first formulated. Under uniform essential and natural boundary conditions, two variational principles are developed based on minimum potential energy and complementary energy. Then, the partitioning method was applied, leading to scale dependent hierarchies on effective (RVE level) permeability. The proof shows that the ensemble average of permeability has an upper bound under essential boundary conditions and a lower bound under uniform natural boundary conditions.
To quantitatively assess the scaling convergence towards the RVE, these hierarchical trends were numerically obtained for various porosities of random disk systems, where the disk centers were generated by a planar Poisson process with inhibition. Overall, the results showed that the higher the density of random disks---or, equivalently, the narrower the micro-channels in the system---the smaller the size of RVE pertaining to the Darcy law.
In the second part of this work, the finite-size scaling of effective thermoelastic properties of random microstructures were considered from Statistical to Representative Volume Element (RVE). Similarly, under the assumption that the microstructure's statistics are spatially homogeneous and ergodic, the SVE is set-up on a mesoscale, i.e. any scale finite relative to the microstructural length scale. The Hill condition generalized to thermoelasticity dictates uniform essential and natural boundary conditions, which, with the help of two variational principles, led to scale dependent hierarchies of mesoscale bounds on effective (RVE level) properties: thermal expansion strain coefficient and stress coefficient, effective stiffness, and specific heats. Due to the presence of a non-quadratic term in the energy formulas, the mesoscale bounds for the thermal expansion are more complicated than those for the stiffness tensor and the heat capacity. To quantitatively assess the scaling trend towards the RVE, the hierarchies are computed for a planar matrix-inclusion composite, with inclusions (of circular disk shape) located at points of a planar, hard-core Poisson point field. Overall, while the RVE is attained exactly on scales infinitely large relative to microscale, depending on the microstructural parameters, the random fluctuations in the SVE response become very weak on scales an order of magnitude larger than the microscale, thus already approximating the RVE.
Based on the above studies, further work on homogenization of heterogeneous materials is outlined at the end of the thesis.
Keywords: Representative Volume Element (RVE), heterogeneous media, permeability, thermal expansion, mesoscale, microstructure.
Buchteile zum Thema "Porous jump"
Levy, A., G. Ben-Dor, S. Sorek und J. Bear. „Jump Conditions Across Strong Compaction Waves in Gas-Saturated Rigid Porous Media“. In Shock Waves @ Marseille III, 203–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-78835-2_34.
Der volle Inhalt der Quelle„Analysis of Stress Jump Coefficient at a Fluid/Porous Interface“. In International Conference on Mechanical Engineering and Technology (ICMET-London 2011), 421–25. ASME Press, 2011. http://dx.doi.org/10.1115/1.859896.paper82.
Der volle Inhalt der QuelleNachowitz, Todd. „Identity and Invisibility“. In Indians and the Antipodes, 26–61. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199483624.003.0002.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Porous jump"
Rossian, Lennart, Roland Ewert und Jan Delfs. „Evaluation of Acoustic Jump Conditions at Discontinuous Porous Interfaces“. In 23rd AIAA/CEAS Aeroacoustics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2017. http://dx.doi.org/10.2514/6.2017-3505.
Der volle Inhalt der QuelleRossian, Lennart, Benjamin W. Fassmann, Roland Ewert und Jan Delfs. „Prediction of porous trailing edge noise reduction using acoustic jump-conditions at porous interfaces“. In 22nd AIAA/CEAS Aeroacoustics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-2920.
Der volle Inhalt der QuelleLiu, Fang, Baoming Chen und Li Wang. „Analysis of Stress Jump Condition at a Fluid/Porous Interface“. In ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18366.
Der volle Inhalt der QuelleValdés-Parada, Francisco J., Benoi^t Goyeau, J. Alberto Ochoa-Tapia und Kambiz Vafai. „Derivation of Complete Jump Boundary Conditions Between Homogeneous Media“. In POROUS MEDIA AND ITS APPLICATIONS IN SCIENCE, ENGINEERING, AND INDUSTRY: 3rd International Conference. AIP, 2010. http://dx.doi.org/10.1063/1.3453846.
Der volle Inhalt der QuelleChen, Hao, Jiabing Wang und Kun Yang. „Analysis of the Momentum Transport Boundary Conditions at a Fluid-Porous Interface“. In ASME 2016 Heat Transfer Summer Conference collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/ht2016-7395.
Der volle Inhalt der QuelleChen, Baoming, Fang Liu, Guoqing Zhang und Zhi Liu. „Influence on Stress Jump Coefficient of Porous Structure and Flow Conditions“. In The 15th International Heat Transfer Conference. Connecticut: Begellhouse, 2014. http://dx.doi.org/10.1615/ihtc15.pmd.009590.
Der volle Inhalt der QuelleChen, Baoming, Li Wang, Fang Liu, Heming Yun und Wenguang Geng. „Effect of Mesoscopic Structure of Interface on Heat and Mass Transfer in a Partially Porous Cavity“. In ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18372.
Der volle Inhalt der Quellede Lemos, Marcelo J. S. „A Model for Turbulent Kinetic Energy Distribution Across the Interface Between a Porous Medium and an Unobstructed Region“. In ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ht-fed2004-56763.
Der volle Inhalt der QuellePeng, Dragon L., Zhimin Du, Baosheng Liang, Zhilin Qi und Wei Wang. „Modeling Two-Phase Flow in Porous Media With Consideration of Jump Interfaces“. In Latin American & Caribbean Petroleum Engineering Conference. Society of Petroleum Engineers, 2007. http://dx.doi.org/10.2118/107233-ms.
Der volle Inhalt der QuelleEnright, Ryan, Cormac Eason, Tara Dalton und Todd Salamon. „Transport in Superhydrophobic Microchannels: A Porous Modeling Approach“. In ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference collocated with the ASME 2007 InterPACK Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ht2007-32823.
Der volle Inhalt der Quelle