Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Porous foam“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Porous foam" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Porous foam"
Starov, Victor, Anna Trybala, Phillip Johnson und Mauro Vaccaro. „Foam Quality of Foams Formed on Capillaries and Porous Media Systems“. Colloids and Interfaces 5, Nr. 1 (08.02.2021): 10. http://dx.doi.org/10.3390/colloids5010010.
Der volle Inhalt der QuelleJohnson, Phillip, Mauro Vaccaro, Victor Starov und Anna Trybala. „Foam Formation and Interaction with Porous Media“. Coatings 10, Nr. 2 (05.02.2020): 143. http://dx.doi.org/10.3390/coatings10020143.
Der volle Inhalt der QuelleAgbedor, Solomon-Oshioke, Donghui Yang, Jianqing Chen, Lei Wang und Hong Wu. „Low-Temperature Reactive Sintered Porous Mg-Al-Zn Alloy Foams“. Metals 12, Nr. 4 (18.04.2022): 692. http://dx.doi.org/10.3390/met12040692.
Der volle Inhalt der QuelleYamada, Yasuo, Takumi Banno, Yun Cang Li und Cui E. Wen. „Anisotropic Mechanical Properties of Nickel Foams Fabricated by Powder Metallurgy“. Materials Science Forum 569 (Januar 2008): 277–80. http://dx.doi.org/10.4028/www.scientific.net/msf.569.277.
Der volle Inhalt der QuelleShih, Albert J., und Zhenhua Huang. „Three-Dimensional Optical Measurements of Porous Foams“. Journal of Manufacturing Science and Engineering 128, Nr. 4 (26.02.2006): 951–59. http://dx.doi.org/10.1115/1.2194556.
Der volle Inhalt der QuelleDouarche, Frederic, Benjamin Braconnier und Bernard Bourbiaux. „Foam placement for soil remediation: scaling foam flow models in heterogeneous porous media for a better improvement of sweep efficiency“. Science and Technology for Energy Transition 78 (2023): 42. http://dx.doi.org/10.2516/stet/2023036.
Der volle Inhalt der QuelleWong, Pei-Chun, Sin-Mao Song, Pei-Hua Tsai, Muhammad Jauharul Maqnun, Wei-Ru Wang, Jia-Lin Wu und Shian-Ching (Jason) Jang. „Using Cu as a Spacer to Fabricate and Control the Porosity of Titanium Zirconium Based Bulk Metallic Glass Foams for Orthopedic Implant Applications“. Materials 15, Nr. 5 (03.03.2022): 1887. http://dx.doi.org/10.3390/ma15051887.
Der volle Inhalt der QuelleThanh, Tram Nguyen Xuan, Michito Maruta, Kanji Tsuru, Alireza Valanezhad, Shigeki Matsuya und Ishikawa Kunio. „Fabrication of Calcite Foam by Inverse Ceramic Foam Method“. Key Engineering Materials 529-530 (November 2012): 153–56. http://dx.doi.org/10.4028/www.scientific.net/kem.529-530.153.
Der volle Inhalt der QuelleWong, Wai Yee, Ahmad Fauzi Mohd Noor und Radzali Othman. „Sintering of Beta-Tricalcium Phosphate Scaffold Using Polyurethane Template“. Key Engineering Materials 694 (Mai 2016): 94–98. http://dx.doi.org/10.4028/www.scientific.net/kem.694.94.
Der volle Inhalt der QuelleXiong, Jian Yu, Yun Cang Li, Yasuo Yamada, Peter D. Hodgson und Cui E. Wen. „Processing and Mechanical Properties of Porous Titanium-Niobium Shape Memory Alloy for Biomedical Applications“. Materials Science Forum 561-565 (Oktober 2007): 1689–92. http://dx.doi.org/10.4028/www.scientific.net/msf.561-565.1689.
Der volle Inhalt der QuelleDissertationen zum Thema "Porous foam"
Osei-Bonsu, Kofi. „Foam-facilitated oil displacement in porous media“. Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/foamfacilitated-oil-displacement-in-porous-media(f2b2e93b-3a9b-41fa-a841-f81b271e8fad).html.
Der volle Inhalt der QuelleArmitage, Paul. „Foam flow through porous media : a micromodel study“. Thesis, Imperial College London, 1991. http://hdl.handle.net/10044/1/46650.
Der volle Inhalt der QuelleGabbrielli, Ruggero. „Foam geometry and structural design of porous material“. Thesis, University of Bath, 2009. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.507759.
Der volle Inhalt der QuelleAlvarez, Martinez José Manuel. „Foam-flow behavior in porous media : effects of flow regime and porous-medium heterogeneity /“. Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.
Der volle Inhalt der QuelleRodeheaver, Bret Alan. „Open-celled microcellular themoplastic foam“. Thesis, Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/18914.
Der volle Inhalt der QuelleYeates, Christopher. „Multi-Scale Study of Foam Flow Dynamics in Porous Media“. Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS023/document.
Der volle Inhalt der QuelleIn this work, we use of a high-complexity micromodel of fixed structure on which we perform a series of experiments with varying injection rates, foam qualities, inlet bubble size distributions and injection methods. We perform individual bubble tracking and associate flow properties with bubble size properties and structural characteristics of the medium. We propose new tools describing the local and global flow in different ways. We establish specific behaviors for different bubble sizes, demonstrating that trapped foams are more likely to have smaller than average bubble sizes, while flowing bubbles also tend to segregate in different flow paths according to bubble size. Larger bubbles tend to flow in high-velocity preferential paths that are generally more aligned with pressure gradient, but smaller bubbles tend to access in supplement transversal paths linking the different preferential paths. Furthermore, for our data we establish the pre-eminence of the trapped foam fraction over bubble density within the microscopic explanation of apparent viscosity, although both contribute to some degree. We structurally characterize consistently trapped zones as areas with either low pore coordination, low entrance throat size, unfavorable throat orientation or a combination thereof. High-flow zones however cannot be characterized in terms of local structural parameters and necessitate integration of complete path information from the entire model. In this regard, in order to capture the high-flow zones, we develop a path-proposing model that makes use of a graph representation of the model, from an initial decomposition into pores and throats, that uses only local throat size and throat orientation relative to pressure gradient to characterize paths
Yeates, Christopher. „Multi-Scale Study of Foam Flow Dynamics in Porous Media“. Electronic Thesis or Diss., Sorbonne université, 2019. http://www.theses.fr/2019SORUS023.
Der volle Inhalt der QuelleIn this work, we use of a high-complexity micromodel of fixed structure on which we perform a series of experiments with varying injection rates, foam qualities, inlet bubble size distributions and injection methods. We perform individual bubble tracking and associate flow properties with bubble size properties and structural characteristics of the medium. We propose new tools describing the local and global flow in different ways. We establish specific behaviors for different bubble sizes, demonstrating that trapped foams are more likely to have smaller than average bubble sizes, while flowing bubbles also tend to segregate in different flow paths according to bubble size. Larger bubbles tend to flow in high-velocity preferential paths that are generally more aligned with pressure gradient, but smaller bubbles tend to access in supplement transversal paths linking the different preferential paths. Furthermore, for our data we establish the pre-eminence of the trapped foam fraction over bubble density within the microscopic explanation of apparent viscosity, although both contribute to some degree. We structurally characterize consistently trapped zones as areas with either low pore coordination, low entrance throat size, unfavorable throat orientation or a combination thereof. High-flow zones however cannot be characterized in terms of local structural parameters and necessitate integration of complete path information from the entire model. In this regard, in order to capture the high-flow zones, we develop a path-proposing model that makes use of a graph representation of the model, from an initial decomposition into pores and throats, that uses only local throat size and throat orientation relative to pressure gradient to characterize paths
Kim, Dae Whan. „Convection and flow boiling in microgaps and porous foam coolers“. College Park, Md. : University of Maryland, 2007. http://hdl.handle.net/1903/7446.
Der volle Inhalt der QuelleThesis research directed by: Mechanical Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Mauray, Alexis. „Etude des propriétés de transport de mousse dans des modèles de milieux poreux“. Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAI120/document.
Der volle Inhalt der QuelleIn enhanced oil recovery (EOR), foams are injected in porous media to improve oil recovery efficiency. The objective is to limit viscous fingering thanks to the high effective viscosity of the foam at low capillary number Ca. Foam is produced by the co-injection of a gas and a solution of surfactants. This thesis focuses on foam formation and transport mechanisms in model porous media using a heterogeneous micromodel made in NOA. Foam formation is studied using two different approaches. The first one consists in studying a co-injection of two fluids thanks to a jet flowing in the center of the system. This experiment shows that the less wetting fluids is dispersed in the other one when the capillary number is higher than 10-5. A second set of experiments is conducted by injected a pre-formed train of big bubbles in model a porous media. The bubbles divide until they reach a diameter of the order of to the pore size, for high enough capillary numbers Ca. Besides, we studied the transport properties of foam in similar model porous media. Direct measurements show that the pressure drop induces by the flow can be at Ca=10-6 as high as 3000 times the pressure corresponding to water injected at the same injection flow rate. This ratio decreases with capillary number. An analysis of the preferential paths by direct observations shows that, for low relative gas flow rate, only a few paths are active. However, an increase of the capillary number or if relative gas flow rate leads to a homogenization of the flow in the medium. Thanks to different simple models of straight or wavy channels, we measure that the pressure drop induced by a single bubble is in good agreement with Bretherton’s law, and scales as Ca2/3. However, in wavy channels the pressure drop due to a single bubble deviates from this prediction and exhibits a plateau at Ca lower than 10-4. In this regime, the motion of the bubble is usually intermittent. Finally, we focus on foam formation and transport properties in presence of oil. Our observations lead to the conclusion that for our setup and surfactant formulations, oil has a negligible influence
Barari, Farzad. „Metal foam regenerators : heat transfer and pressure drop in porous metals“. Thesis, University of Sheffield, 2014. http://etheses.whiterose.ac.uk/6366/.
Der volle Inhalt der QuelleBücher zum Thema "Porous foam"
Perkowitz, S. Universal foam: From Cappuccino to the cosmos. New York: Walker & Co., 2000.
Den vollen Inhalt der Quelle findenAharonov, Einat. Solid-fluid interactions in porous media: Processes that form rocks. [Woods Hole, Mass: Massachusetts Institute of Technology, Woods Hole Oceanographic Institution, Joint Program in Oceanography/Applied Ocean Science and Engineering, 1996.
Den vollen Inhalt der Quelle findenAharonov, Einat. Solid-fluid interactions in porous media: Processes that form rocks. [Woods Hole, Mass: Massachusetts Institute of Technology, Woods Hole Oceanographic Institution, Joint Program in Oceanography/Applied Ocean Science and Engineering, 1996.
Den vollen Inhalt der Quelle findenVipin, Kumar, American Society of Mechanical Engineers. Materials Division. und International Mechanical Engineering Congress and Exposition (1998 : Anaheim, Calif.), Hrsg. Porous, cellular and microcellular materials: Presented at the 1998 ASME International Mechanical Engineering Congress and Exposition, November 15-20, 1998, Anaheim, California. New York, N.Y: American Society of Mechanical Engineers, 1998.
Den vollen Inhalt der Quelle findenVipin, Kumar, American Society of Mechanical Engineers. Materials Division. und International Mechanical Engineering Congress and Exposition (2000 : Orlando, Fla.), Hrsg. Porous, cellular and microcellular materials 2000: Presented at the 2000 ASME International Mechanical Engineering Congress and Exposition, November 5-10, 2000, Orlando, Florida. New York, N.Y: American Society of Mechanical Engineers, 2000.
Den vollen Inhalt der Quelle findenMeeting, Royal Society (Great Britain) Discussion. Engineered foams and porous materials: Papers of a discussion meeting issue organised and edited by Anthony Kelly ... [et al.]. London: The Royal Society, 2006.
Den vollen Inhalt der Quelle findenDukhan, Nihad, Hrsg. Proceedings of the 11th International Conference on Porous Metals and Metallic Foams (MetFoam 2019). Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42798-6.
Der volle Inhalt der QuelleOlagunju, M. O. A study of efficient recovery of liquid from fine air-liquid mists of the form generated in gas turbine bearing chambers using a rotating porous disc. London: University of East London, 1998.
Den vollen Inhalt der Quelle findenCarey, Neil. Masks of the Koranko Poro: Form, function, and comparison to the Toma. Amherst, MA: Ethnos Publications, 2007.
Den vollen Inhalt der Quelle findenTimchenko, Tat'yana, und Evgenia Filatova. Customs clearance of container shipping. ru: Publishing Center RIOR, 2019. http://dx.doi.org/10.29039/01886-6.
Der volle Inhalt der QuelleBuchteile zum Thema "Porous foam"
Rossen, William R. „Foam in Porous Media“. In Foams and Emulsions, 335–48. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-015-9157-7_20.
Der volle Inhalt der QuelleShirley, Arthur I. „Foam Formation in Porous Media“. In ACS Symposium Series, 234–57. Washington, DC: American Chemical Society, 1988. http://dx.doi.org/10.1021/bk-1988-0373.ch012.
Der volle Inhalt der QuelleFlumerfelt, Raymond W., und John Prieditis. „Mobility of Foam in Porous Media“. In ACS Symposium Series, 295–325. Washington, DC: American Chemical Society, 1988. http://dx.doi.org/10.1021/bk-1988-0373.ch015.
Der volle Inhalt der QuelleBenali, Benyamine. „The Flow of Supercritical CO2 Foam for Mobility Control“. In Album of Porous Media, 94. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-23800-0_76.
Der volle Inhalt der QuelleRose, Lauren, Natalia Shmakova, Natalya Penkovskaya, Benjamin Dollet, Christophe Raufaste und Stéphane Santucci. „Quasi-Two-Dimensional Foam Flowthrough and Around a Permeable Obstacle“. In Album of Porous Media, 93. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-23800-0_75.
Der volle Inhalt der QuelleAtteia, Olivier, Henri Bertin, Nicolas Fatin-Rouge, Emily Fitzhenry, Richard Martel, Clément Portois, Thomas Robert und Alexandre Vicard. „Application of Foams as a Remediation and Blocking Agent“. In Advances in the Characterisation and Remediation of Sites Contaminated with Petroleum Hydrocarbons, 591–622. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-34447-3_17.
Der volle Inhalt der QuelleKovscek, A. R., und C. J. Radke. „Fundamentals of Foam Transport in Porous Media“. In Advances in Chemistry, 115–63. Washington, DC: American Chemical Society, 1994. http://dx.doi.org/10.1021/ba-1994-0242.ch003.
Der volle Inhalt der QuelleGuo, Feng, und Saman A. Aryana. „Foam Flooding in a Heterogeneous Porous Medium“. In Advances in Petroleum Engineering and Petroleum Geochemistry, 65–67. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-01578-7_16.
Der volle Inhalt der QuelleDünger, Udo, Herbert Weber und Hans Buggisch. „A Simple Model for a Fluid-Filled Open-Cell Foam“. In Porous Media: Theory and Experiments, 269–84. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4579-4_17.
Der volle Inhalt der QuelleTram, N. X. T., M. Maruta, K. Tsuru, S. Matsuya und K. Ishikawa. „Hydrothermal Conversion of Calcite Foam to Carbonate Apatite“. In Advances in Bioceramics and Porous Ceramics VI, 59–65. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118807811.ch5.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Porous foam"
Randall, O., I. Tsitsimpelis, D. Folley, A. Kennedy und M. J. Joyce. „A Porous Metal Foam Collimator for Robotic Tasks“. In 2024 IEEE Nuclear Science Symposium (NSS), Medical Imaging Conference (MIC) and Room Temperature Semiconductor Detector Conference (RTSD), 1. IEEE, 2024. http://dx.doi.org/10.1109/nss/mic/rtsd57108.2024.10655806.
Der volle Inhalt der QuelleGauglitz, P. A., F. Friedmann, S. I. Kam und W. R. Rossen. „Foam Generation in Porous Media“. In SPE/DOE Improved Oil Recovery Symposium. Society of Petroleum Engineers, 2002. http://dx.doi.org/10.2118/75177-ms.
Der volle Inhalt der QuelleChacko, Z. „Thermal Conductivity of Steel-Steel Composite Metal Foam through Computational Modeling“. In Porous Metals and Metallic Foams. Materials Research Forum LLC, 2024. http://dx.doi.org/10.21741/9781644903094-3.
Der volle Inhalt der QuelleCance, J. C. „Characterization of 316L Stainless Steel Composite Metal Foam Joined by Solid-State Welding Technique“. In Porous Metals and Metallic Foams. Materials Research Forum LLC, 2024. http://dx.doi.org/10.21741/9781644903094-2.
Der volle Inhalt der QuelleAmoafo-Yeboah, N. T. „Surface Emissivity Effect on the Performance of Composite Metal Foam against Torch Fire Environment“. In Porous Metals and Metallic Foams. Materials Research Forum LLC, 2024. http://dx.doi.org/10.21741/9781644903094-1.
Der volle Inhalt der QuelleLiu, Dianbin, L. M. Castanier und W. E. Brigham. „Displacement by Foam in Porous Media“. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 1992. http://dx.doi.org/10.2118/24664-ms.
Der volle Inhalt der QuelleRakesh, M. „Numerical Investigation on Deformation Behavior of Aluminium Foams with in situ Composite Particles“. In Porous Metals and Metallic Foams. Materials Research Forum LLC, 2024. http://dx.doi.org/10.21741/9781644903094-6.
Der volle Inhalt der QuelleMare, Esmari. „Analytical Determination of the Geometrical Properties of Open-Celled Metal Foams Under Compression“. In Porous Metals and Metallic Foams. Materials Research Forum LLC, 2024. http://dx.doi.org/10.21741/9781644903094-5.
Der volle Inhalt der QuelleKovscek, A. R., T. W. Patzek und C. J. Radke. „Simulation of Foam Transport in Porous Media“. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 1993. http://dx.doi.org/10.2118/26402-ms.
Der volle Inhalt der QuelleHong, Jung Hwa, Soojin Lee, Jun-Mo Hong, Yoon-Keun Bae, Seung-Kwon Kim und Joonghee Kim. „Porous Elastic Behavior of Open-Cell Foam“. In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1998. http://dx.doi.org/10.4271/980965.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Porous foam"
Zhang, Z. F., Vicky L. Freedman und Lirong Zhong. Foam Transport in Porous Media - A Review. Office of Scientific and Technical Information (OSTI), November 2009. http://dx.doi.org/10.2172/1016458.
Der volle Inhalt der QuelleKovscek, A. R., T. W. Patzek und C. J. Radke. Simulation of foam displacement in porous media. Office of Scientific and Technical Information (OSTI), August 1993. http://dx.doi.org/10.2172/10192495.
Der volle Inhalt der QuelleKovscek, A. R., und C. J. Radke. Fundamentals of foam transport in porous media. Office of Scientific and Technical Information (OSTI), Oktober 1993. http://dx.doi.org/10.2172/10192736.
Der volle Inhalt der QuelleCohen, D., T. W. Patzek und C. J. Radke. Mobilization of trapped foam in porous media. Office of Scientific and Technical Information (OSTI), Juni 1996. http://dx.doi.org/10.2172/285487.
Der volle Inhalt der QuelleLiu, Dianbin, und W. E. Brigham. Transient foam flow in porous media with CAT Scanner. Office of Scientific and Technical Information (OSTI), März 1992. http://dx.doi.org/10.2172/5573805.
Der volle Inhalt der QuelleLiu, Dianbin, und W. E. Brigham. Transient foam flow in porous media with CAT Scanner. Office of Scientific and Technical Information (OSTI), März 1992. http://dx.doi.org/10.2172/10132657.
Der volle Inhalt der QuelleKovscek, A. R., und C. J. Radke. A comprehensive description of transient foam flow in porous media. Office of Scientific and Technical Information (OSTI), Januar 1993. http://dx.doi.org/10.2172/10103735.
Der volle Inhalt der QuelleCohen, D., T. W. Patzek und C. J. Radke. Experimental tracking of the evolution of foam in porous media. Office of Scientific and Technical Information (OSTI), Juli 1996. http://dx.doi.org/10.2172/274165.
Der volle Inhalt der QuelleBergeron, V., M. E. Fagan und C. J. Radke. A generalized entering coefficient to characterize foam stability against oil in porous media. Office of Scientific and Technical Information (OSTI), November 1992. http://dx.doi.org/10.2172/10192717.
Der volle Inhalt der QuelleBergeron, V., M. E. Fagan und C. J. Radke. Generalized entering coefficients: A criterion for foam stability against oil in porous media. Office of Scientific and Technical Information (OSTI), September 1993. http://dx.doi.org/10.2172/10192744.
Der volle Inhalt der Quelle