Dissertationen zum Thema „Porosity Characterization“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Porosity Characterization" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Vazehrad, Sadaf. „Shrinkage Porosity Characterization in Compacted Cast Iron Components“. Thesis, KTH, Materialvetenskap, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-127261.
Der volle Inhalt der QuelleVAKIFAHMETOGLU, CEKDAR. „FABRICATION AND CHARACTERIZATION OF POROUS CERAMICS WITH HIERARCHICAL POROSITY“. Doctoral thesis, Università degli studi di Padova, 2010. http://hdl.handle.net/11577/3422377.
Der volle Inhalt der QuelleIl lavoro di ricerca esposto nella presente tesi riguarda la produzione di componenti porosi mediante l’uso di polimeri preceramici quali precursori iniziali. Durante una fase preliminare del lavoro di ricerca, sulla quale si è basata la produzione di ceramici cellulari derivati da polimeri, sono state studiate varie composizioni. Ceramici cellulari di SiOC aventi una morfologia complessa sono stati realizzati usando tre diversi tipi di precursori polisilossanici. La formazione di pori è stata attribuita alle differenti strutture dei polimeri, che hanno comportato differenti comportamenti durante la pirolisi (maggiore perdita in peso, diminuzione del volume e sviluppo di gas). In tale contesto, precursori polisilossanici sono stati reticolati, ridotti in polvere, setacciati e pressati al fine di ottenere campioni risultanti in monoliti di SiOC poroso, mediante pirolisi. I campioni ceramici cosí ottenuti esibivano valori di resistenza a compressione fino a 37,4 MPa (con una porosità pari a circa il 53% in volume). La pressatura isostatica a caldo ha consentito la formazione di campioni di SiOC(N) aventi piezoresistivitá estremamente elevata, compresa tra 100 e 1700 ad alte temperature (700-1000°C). Utilizzando un precursore polisilazanico, sono state prodotte schiume microcellulari di SiOCN e macrocellulari di SiCN, mediante l’impiego di fillers sacrificali o di un agente schiumante fisico. Le schiume presentavano una porosità prevalentemente interconnessa compresa tra ~60 e 80 vol% ed una resistenza a compressione compresa tra ~1 e 11 MPa. Utilizzando procedimenti simili, sono stati inoltre prodotti campioni monolitici porosi (70 vol%) di PDC contenenti boro. Al fine di produrre componenti ceramici derivati da polimeri, dotati di porosità gerarchica e di elevata area superficiale specifica (SSA), particelle di PMO (Periodic Mesoporous Organosilica) sono state immerse in un polimero polisilossanico schiumato e, mediante pirolisi, sono stati ottenuti campioni monolitici di SiOC permeabili dotati di una elevata SSA, pari a 137 m2/g. Mediante tale metodo, pirolisi catalizzata assistita (CAP), nanofili di nitruro di silicio, di ossinitruro di silicio o di carburo di silicio sono stati formati direttamente durante la pirolisi di campioni monolitici altamente porosi. L’aumento della temperatura di pirolisi ha provocato un aumento nella lunghezza e nella quantità di nanostrutture prodotte. Il meccanismo di crescita dei nanofili dipende dalle condizioni di pirolisi e dal tipo di catalizzatore. La presenza dei nanofili ha permesso di raggiugere elevati valori di SSA nei ceramici macroporosi, compresa tra 10 e 110 m2/g. Le diversità in tali valori sono state spiegate in termini di morfologia e quantità dei nanofili prodotti impiegando due diversi catalizzatori (Co e Fe). L’ablazione superficiale (etching) ad elevate temperature di ceramici di SiCN ha condotto a materiali contenenti carbonio amorfo o grafitico dotati di una struttura gerarchica bimodale dei pori (micro-mesopori con dimensione media dei pori di 3-11 nm) ed elevata SSA, fino a 2400 m2/g. La porosità risultante (dimensione dei pori, PSD e SSA) dipendeva fortemente dall’evoluzione della fase nanostrutturale del materiale PDC, nonché dalle condizioni di etching. La dimensione media dei pori aumentava all’aumentare della temperatura di pirolisi.
Layman, John Morgan II. „Porosity Characterization Utilizing Petrographic Image Analysis: Implications for Identifying and Ranking Reservoir Flow Units, Happy Spraberry Field, Garza County, Texas“. Texas A&M University, 2004. http://hdl.handle.net/1969.1/399.
Der volle Inhalt der QuelleAUGUSTO, KAREN SOARES. „POROSITY CHARACTERIZATION OF IRON ORE PELLETS BY X-RAY MICROTOMOGRAPHY“. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2016. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=29701@1.
Der volle Inhalt der QuelleCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
PROGRAMA DE SUPORTE À PÓS-GRADUAÇÃO DE INSTS. DE ENSINO
As pelotas de minério de ferro são uma das principais matérias-primas, juntamente com o minério granulado e o sínter, do processo de fabricação do aço. São produzidas pelo processo de pelotização, aproveitando a parcela ultrafina do minério, que antes era considerada rejeito do processo de beneficiamento. A porosidade gerada no processo de fabricação das pelotas é uma importante característica do material, pois permite o fluxo interno de gases, aumentando a sua redutibilidade e consequentemente a eficiência do processo. Por outro lado, a porosidade afeta a resistência física das pelotas, que precisam suportar todos os esforços sofridos durante as operações de manuseio, transporte e dos processos metalúrgicos. Dessa forma, a quantidade, tamanho, forma e a distribuição espacial dos poros são características importantes no controle de qualidade das pelotas, que são produzidas em grande escala e vem ganhando cada vez mais importância nas usinas siderúrgicas. Tradicionalmente, as técnicas analíticas mais utilizadas na caracterização da porosidade desses materiais são porosimetria por intrusão de mercúrio (PIM) e microscopia ótica (MO). A PIM só permite avaliar poros que estão conectados à superfície, além de utilizar o mercúrio que é um material volátil e tóxico, que oferece riscos ao meio ambiente e à saúde humana. A MO é limitada ao espaço bidimensional, podendo trazer informações pouco representativas. Ambas as técnicas são destrutivas, podendo degradar o material no processo de preparação e também impossibilitando análises posteriores numa mesma amostra. O presente trabalho propõe desenvolver uma metodologia de caracterização tridimensional de porosidade em pelotas de minério de ferro, envolvendo a técnica de microtomografia de raios X (MicroCT) e análise de imagens, a fim de estudar separadamente os diferentes tipos de poros (abertos e fechados), e comparar com as técnicas clássicas citadas anteriormente. Foram utilizadas 25 amostras cedidas pela Vale, analisadas Augusto, Karen Soares; Paciornik, Sidnei. Microtomografia Computadorizada de Raios X Aplicada à Caracterização de Porosidade em Pelotas de Minério de Ferro. Rio de Janeiro, 2016. 156p. Tese de Doutorado – Departamento de Engenharia Química e de Materiais, Pontifícia Universidade Católica do Rio de Janeiro. primeiramente por MicroCT e posteriormente por PIM ou MO. Para tentativas de otimização, foram testados alguns parâmetros de análise em MicroCT, tais como o uso de lentes, diferentes configurações geométricas dos dispositivos que compõem o equipamento e número de projeções, que afetam diretamente a resolução e o tempo de análise. Comparou-se os resultados obtidos em MicroCT com os obtidos por PIM e MO, em amostras equivalentes, observando-se valores menores de porosidade para a técnica de MicroCT, devido à pior resolução do sistema. Porém, a metodologia apresentada foi capaz de quantificar a porosidade aberta e fechada separadamente, descrever a distribuição espacial, além de medir tamanho e forma, dos poros.
Iron ore pellets are one of the major iron-bearing raw materials, along with lump ore and sinter, for the steelmaking processes. Pellets are produced from ultrafine fractions of iron ores, which were previously considered as tailings of mineral beneficiation. The porosity generated during the pelletizing process is an important characteristic of the material because it allows internal gas flow, increasing its reducibility and consequently the process efficiency. On the other hand, the porosity affects the physical strength of the pellets, which must withstand all loads during handling operations, transportation and metallurgical processes. Thus, the amount, size, shape and spatial distribution of pores are important features for the pellet quality control. Traditionally, most analytical techniques used to characterize the porosity of pellets are mercury intrusion porosimetry (MIP) and optical microscopy (OM). Nevertheless, MIP allows evaluating only pores connected to the surface, in addition mercury is volatile and toxic, offering risks to the environment and human health. OM, in turn, is limited to two-dimensional space and can reveal unrepresentative information. Both techniques are destructive and consequently prevent further analysis of the same sample. The present work proposes the development of a methodology for the tridimensional characterization of the porosity in iron ore pellets through X-ray microtomography (MicroCT) and image analysis in order to separately determine the different types of pores (open and closed). 25 samples provided by the Vale mining company were first analyzed by MicroCT and then by MIP or OM. For optimization purposes, some operating parameters of MicroCT were tested, such as the use of lenses, different geometric configurations, and the number of projections, which directly affect the obtained image resolution and the analysis time. Comparing the results obtained in MicroCT with the results obtained by MIP and OM in equivalent samples, smaller porosity measurements were observed for MicroCT, due to the poorer resolution of the system. However, this methodology has been able to separately quantify the open and closed porosity, to describe the spatial distribution of pores, and to measure their size and shape.
Mueller, Jennifer Elizabeth. „Determining the Role of Porosity on the Thermal Properties of Graphite Foam“. Thesis, Virginia Tech, 2008. http://hdl.handle.net/10919/34110.
Der volle Inhalt der QuelleMaster of Science
Kim, Tae Hyung. „Fracture characterization and estimation of fracture porosity of naturally fractured reservoirs with no matrix porosity using stochastic fractal models“. [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-2570.
Der volle Inhalt der QuelleAdelhelm, Philipp. „Novel carbon materials with hierarchical porosity : templating strategies and advanced characterization“. Phd thesis, Universität Potsdam, 2007. http://opus.kobv.de/ubp/volltexte/2007/1505/.
Der volle Inhalt der QuelleKohlenstoffmaterialien finden aufgrund ihrer Vielseitigkeit heute in den unterschiedlichsten Bereichen des täglichen Lebens ihren Einsatz. Bekannte Beispiele sind Kohlenstofffasern in Verbundwerkstoffen, Graphit als trockenes Schmiermittel, oder Aktivkohlen in Filtersystemen. Ferner wird Graphit als Elektrodenmaterial auch in Lithium-Ionen-Batterien verwendet. Wegen knapper werdender Ressourcen von Öl und Gas wurde in den letzten Jahren verstärkt an der Entwicklung neuer Materialien für die Speicherung von Wasserstoff und elektrischer Energie gearbeitet. Die Nanotechnologie ist dabei auch für neue Kohlenstoffmaterialien zukunftsweisend, denn sie stellt weitere Anwendungsmöglichkeiten in Aussicht. In dieser Arbeit wurden hierzu mittels des sogenannten Nanocastings neue Kohlenstoffmaterialien für Energieanwendungen, insbesondere zur Speicherung von elektrischer Energie entwickelt. Die Eigenschaften eines Kohlenstoffmaterials beruhen im Wesentlichen auf der Struktur des Kohlenstoffs im molekularen Bereich. Die in dieser Arbeit hergestellten Materialen bestehen aus nichtgraphitischem Kohlenstoff und wurden im ersten Teil der Arbeit mit den Methoden der Röntgenstreuung genau untersucht. Eine speziell für diese Art von Kohlenstoffen kürzlich entwickelte Modellfunktion wurde dazu an die experimentellen Streubilder angepasst. Das verwendete Modell basiert dabei auf den wesentlichen Strukturmerkmalen von nichtgraphitischem Kohlenstoff und ermöglichte von daher eine detaillierte Beschreibung der Materialien. Im Gegensatz zu den meisten nichtgraphitischen Kohlenstoffen konnte gezeigt werden, dass die Verwendung von Mesophasen-Pech als Vorläufersubstanz (Precursor) ein Material mit vergleichsweise geringem Grad an Unordnung ermöglicht. Solch ein Material erlaubt eine ähnlich reversible Einlagerung von Lithium-Ionen wie Graphit, weist aber gleichzeitig wegen des nichtgraphitischen Charakters eine deutlich höhere Speicherfähigkeit auf. Zur Beschreibung der Porosität eines Materials verwendet man die Begriffe der Makro-, Meso-, und Mikroporen. Die Aktivität eines Materials kann durch die Erhöhung der Oberfläche noch erheblich gesteigert werden. Hohe Oberflächen können insbesondere durch die Schaffung von Poren im Nanometerbereich erzielt werden. Um die Zugänglichkeit zu diesen Poren zu steigern, weist ein Material idealerweise zusätzlich ein kontinuierliches makroporöses Transportsystem (Porendurchmesser d > 50 nm) auf. Solch eine Art von Porosität über mehrere Größenordnungen wird allgemein als „hierarchische Porosität“ bezeichnet. Für elektrochemische Anwendungen sind sogenannte Mesoporen (d = 2 – 50 nm) relevant, da noch kleinere Poren (Mikroporen, d < 2 nm) z.B. zu einer irreversiblen Bindung von Lithium- Ionen führen können. Wird Mesophasen-Pech als Kohlenstoffprekursor verwendet, kann die Entstehung dieser Mikroporen verhindert werden. Im zweiten und dritten Teil der Arbeit konnte mit den Methoden des „Nanocastings“ zum ersten Mal die spezielle Struktur des Mesophasen-Pech basierenden Kohlenstoffmaterials mit den Vorteilen einer hierarchischen (makro- / meso-) Porosität kombiniert werden. Im ersten Syntheseverfahren wurde dazu ein sogenanntes „hartes Templat“ mit entsprechender Porosität aus Siliziumdioxid repliziert. Aufgrund der hohen Viskosität des Pechs und der geringen Löslichkeit wurde dazu ein Verfahren entwickelt, das die Infiltration des Templates auch auf der Nanometerebene ermöglicht. Das Material konnte in Form größerer Körper (Monolithen) hergestellt werden, die im Vergleich zu Pulvern eine bessere technische Verwendung ermöglichen. Im zweiten Syntheseverfahren konnte die Herstellung eines hierarchisch makro- / mesoporösen Kohlenstoffmaterials erstmals mittels eines weichen Templates (organisches Polymer) erreicht werden. Die einfache Entfernung von weichen Templaten durch eine geeignete Temperaturbehandlung, macht dieses Verfahren im Vergleich zu hart templatierten Materialien kostengünstiger und stellt eine technische Umsetzung in Aussicht. Desweiteren erlaubt das Syntheseverfahren die Herstellung von monolithischen Körpern und die Einbindung funktionaler Nanopartikel. Die hergestellten Materialien zeigen exzellente Eigenschaften als Elektrodenmaterial in Lithium-Ionen-Batterien und als Trägermaterial für Superkondensatoren.
Bueno, Alejandra. „Catalyst supports with hierarchical and radial porosity : preparation, characterization and catalytic evaluation“. Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1249.
Der volle Inhalt der QuelleThe vast majority of chemical processes are catalytic. Within the heterogeneous catalysis, industrial catalysts are bodies whose size ranges between 1 mm to 1 cm. For most catalysts, the active phase (i.e. metal nanoparticles) is dispersed in a mesoporous support having a high specific surface area. To overcome the problem of internal diffusional limitation, a secondary network of macropores is introduced within the catalyst support. This improves the diffusion of substrates. However, in the case where the catalytic reaction is particularly fast, the diffusion inside the porous support can remain limiting (Thiele modulus), resulting in a loss of catalytic effectiveness. The objective of this thesis is to study the catalytic effectiveness of a new alumina-based support shaped into spherical pellets, owing a radial macroporosity. In order to quantify the impact of this new porous structure, two model catalytic reactions were chosen to test the catalysts: CO oxidation and isooctane cracking. The catalytic activity was compared to reference commercial supports owing hierarchical porosity. For both reactions, the new support with radial porosity increases the activity from 25 to 95% approximately. On the basis of a fine characterization of the porosity of the beads (adsorption N2-77k, porosimetry Hg, X-ray microtomography), the catalytic activities were modeled. We conclude that the impact on the catalytic activity is essentially due to the radial porous design
Dickerson, Bryan Douglas Jr. „Characterization of Ferroelectric Films by Spectroscopic Ellipsometry“. Thesis, Virginia Tech, 1997. http://hdl.handle.net/10919/10148.
Der volle Inhalt der QuelleMaster of Science
Zhang, Yinning. „Characterization of High Porosity Drainage Layer Materials for M-E Pavement Design“. Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/51389.
Der volle Inhalt der QuellePh. D.
Lowery, Joseph Lenning. „Characterization and modification of porosity in electrospun polymeric materials for tissue engineering applications“. Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/54582.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references.
The process of charging a polymer solution to draw a filament is known as electrospinning. Electrospinning is capable of producing a continuously depositing jet of controllable micron and sub-micron diameters. As fiber deposits, a nonwoven mat of randomly oriented fibers in two dimensions is generated. The mat is mechanically robust and suitable for a wide variety of applications due to its high surface area to mass ratio, controllable size scale and surface chemistry, and large void fraction. The number of publications on the topic of electrospinning continues to grow exponentially, as the experimental apparatus is relatively inexpensive to assemble and 1 mm thick fiber mats can be generated in as little as 2 hours. Many publications have focused on potential applications or the processing of specific materials. Some publications have reported on the hydrodynamics and physics of the electrospinning process, leading to an increased control of fiber diameter and morphology. One area that remains relatively unexplored is pore diameter and porosity within the fiber mat. The present work explores characterizing and controlling void space in electrospun materials and the use of these materials in the field of tissue engineering. Characterization and prediction of overall void fraction and individual pore diameter is first addressed. Mercury porosimetry was used to establish two physical parameters useful in electrospinning applications: average pore diameter and peak pore diameter. Average pore diameter refers to the volume-weighted average determined by the volumetric profile. Peak pore diameter is the pore diameter at which the largest amount of void volume becomes accessible.
(cont.) The accuracy of mercury porosimetry was also addressed, leading to a method of data correction for buckling of pores under the significant pressure generated by mercury porosimetry. Having characterized and predicted the void statistics for as-spun materials, the second portion of this work sought to use post-processing techniques to alter the effective pore diameter. Two components - poly(E-caprolactone) and poly(ethylene oxide) - were electrospun together, either from a common polymer solution or adjacent fluid jets on to a common target. Water was used to selectively remove the poly(ethylene oxide) component in both systems, with vastly different results. Mats electrospun from a common solution saw an increasing reduction in the void diameter with increasing poly(ethylene oxide) removal due to poly(E-caprolactone) chain rearrangement and contraction of the polymer fibers, up to a pore diameter reduction of 80%. Mats produced by the dual jet method saw both an increase and decrease of the effective pore diameter depending on processing conditions. These experiments represent the first steps by researchers to specifically tailor pore diameter independent of porosity or fiber diameter. The final portion of this thesis deals with the use of electrospun materials as 3-Dimensional tissue engineering scaffolds. An effective perfusion technique was developed for the seeding and infiltration of cells into multiple electrospun mats simultaneously, with 100% efficiency. This represents an enormous advantage over conventional seeding methods.
(cont.) Human Dermal Fibroblasts were seeded into scaffolds of drastically varied fiber diameter (300nm to 8 [mu]m) and morphology (beaded vs. uniform diameter). Despite cells spreading along large fibers instead of developing multiple attachment points between fibers, cell proliferation was greatest in scaffolds with pore diameters greater than 6 [mu]m. At the same time, mats with pore diameters less than 12 pm observed the greatest extracellular matrix growth. Additional investigation would be well-served to determine optimal parameters for cell dispersion and reproduction throughout the electrospun template across multiple cell phenotypes.
by Joseph Lenning Lowery.
Ph.D.
Patibandla, Aditya Ramamurthy. „Effect of Process Parameters on Surface Roughness and Porosity of Direct Metal Laser Sintered Metals“. University of Cincinnati / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1544691813554763.
Der volle Inhalt der QuelleRazavi, Mohammad Reza. „Characterization of microstructure and internal displacement field of sand using X-ray computed tomography“. Online access for everyone, 2006. http://www.dissertations.wsu.edu/Dissertations/Fall2006/M_Razavi_121206.pdf.
Der volle Inhalt der QuelleTodorovic, Dijana. „Characterization of colmated wine cork stoppers“. Master's thesis, ISA/UL, 2012. http://hdl.handle.net/10400.5/8605.
Der volle Inhalt der QuelleThe objective of this work is to describe and compare colmated and non-colmated stoppers cork stoppers, regarding their differences in appearance (image analysis), structure (analysis with scanning electron microscopy- SEM), and mechanical behavior (compression test). For this study 75 natural cork stoppers were used and divided equally in 3 groups: (i) stoppers of superior class; (ii) stoppers of inferior class to be colmated; (iii) colmated stoppers. Image analysis techniques were applied on the surfaces of superior and inferior (pre-colmated) class of stoppers, to analyze their porosity. Porosity features showed differences between two classes: higher values of all features in the inferior class and lower in the superior quality class. Water absorption test performed on colmated and pre-colmated group of stoppers showed small differences between them: colmated stoppers absorbed less water (92.1%) than pre-colmated class (98.8%) and the same trend was found with dimensional variations (swelling) (lower swelling of colmated stoppers was reported). The behavior of the colmated and pre-colmated stoppers under compression performed in axial and radial direction was studied. Young’s modulus for compression in axial direction were 21.2 MPa and 18.4 MPa for colmated and pre-colmated group respectively, while the compression in radial direction was characterized with the range of force for the given deformation, with mean values of 147 kN and 135 kN for 1 mm deformation. Colmated stoppers were additionally analyzed by SEM, where the observations emphasis was given to the colmation material impregnation in the interior of the stoppers. Colmation material presence was mainly reported on the stoppers surface. It can be concluded that colmation process primarily improves the appearance of the stopper, covering successfully the undesirable surface pores, which is the main objective of the colmation.
Pastorino, David. „Calcium phosphate cements and foams: characterization of porosity and use as local drug delivery devices“. Doctoral thesis, TDX (Tesis Doctorals en Xarxa), 2015. http://hdl.handle.net/10803/673603.
Der volle Inhalt der QuelleLa presente Tesis doctoral se enmarca dentro del proyecto MAT2012 del grupo de investigación BBT de la UPC: "Pore4Bone: Biomimetic calcium phosphates: tailoring porosity from the nano- to the macroscale for osteoinduction, drug delivery and bone tissue engineering" financiado por el Gobierno de España. El hueso es uno de los tejidos más trasplantados mundialmente con hasta 1 millón de cirugías anuales. El envejecimiento de la población conlleva la necesidad de hacer grandes esfuerzos en el diseño de biomateriales multifuncionales, eficientes y clínicamente aplicables a la regeneración ósea. El aumento del número de injertos óseos necesarios y la necesidad de encontrar soluciones avanzadas hace que los biomateriales sintéticos sean una alternativa atractiva a los auto- o xeno- injertos actuales. Los cementos de fosfato de calcio (CPCs) son materiales muy versátiles en cuanto a los procesos de conformado, y presentan propiedades muy similares a las del hueso natural. Siendo materiales biocompatibles y osteoconductivos, los CPCs actúan de soporte al proceso de remodelación ósea in vivo . Además, los CPCs presentan una micro- y nano- porosidad intrínseca, que tiene su origen en los espacios entre los cristales que se forman tras el fraguado. Dicha porosidad es de gran relevancia en la regeneración ósea y la liberación local de fármacos, al proporcionar espacios disponibles para la difusión de los fármacos y la circulación de fluidos corporales, ambos procesos esenciales para la liberación del principio activo. En esta Tesis Doctoral se ha abordado la caracterización de la porosidad de los CPCs en profundidad, especialmente a escala micro- y nanoscópica, por ser de gran interés en la identificación de los mecanismos de regeneración ósea y liberación controlada de fármacos. En el caso de las infecciones óseas, en la presente Tesis Doctoral se explora la combinación de antibióticos con matrices bioactivas como los CPCs. Así, mientras las infecciones óseas se tratan habitualmente mediante la administración sistémica de antibióticos de forma post-operatoria, alcanzar una liberación local eficaz del principio activo es un reto clave, que permitiría reducir los efectos secundarios no deseados, minimizar las interacciones potenciales entre fármacos y disminuir la dosis necesaria, gracias a una mayor biodisponibilidad. En este Trabajo, se ha estudiado en profundidad la relación entre la incorporación de antibiótico, la porosidad y la liberación de fármaco en cementos de fosfato de calcio (CPCs). Además, se ha investigado la introducción de macroporosidad en los CPCs con el objetivo de fabricar espumas de fosfato de calcio (CPFs) capaces de liberar fármacos para regeneración ósea a nivel local, con claras ventajas frente a los CPCs como biomateriales multifuncionales. En efecto, la eficacia clínica de los CPCs como dispositivos de liberación local de fármacos está limitada por la relativamente baja penetración y circulación de los fluidos corporales en los mismos, impidiendo una liberación completa del fármaco. El riesgo de que el antibiótico atrapado en el material se libere lentamente durante la degradación del mismo, dando lugar a concentraciones locales de antibiótico inferiores a la concentración mínima inhibitoria, puede llevar a la generación de resistencia bacteriana al antibiótico. La adición de una red de macroporos interconectados en los CPFs representa un avance importante, puesto que aumenta la circulación de fluidos corporales en el biomaterial, incrementa el control sobre la cinética de liberación de fármacos y permite colonización celular. Así pues, los CPFs junto a la inyectabilidad y el biomimetismo de los CPCs, presentan a una macroporosidad interconectada que les confiere un elevado interés en vistas tanto a la regeneración ósea como a la liberación local de fármacos.
Yates, Malcolm. „The characterization of novel cements“. Thesis, Brunel University, 1991. http://bura.brunel.ac.uk/handle/2438/4883.
Der volle Inhalt der QuelleBorkar, Neha. „Characterization of microporous membrane filters using scattering techniques“. University of Cincinnati / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1289943937.
Der volle Inhalt der QuelleMaseko, Phindile Pearl. „Petrophysical evaluation and characterization of sandstone reservoirs of the western Bredasdorp Basin, South Africa for well D-D1 and E-AP1“. Thesis, University of the Western Cape, 2016. http://hdl.handle.net/11394/5181.
Der volle Inhalt der QuelleThe Bredasdorp Basin was formed consequent to extensional episodes during the initial stages of rifting in the Jurassic age. The basin acted as a local depocentre and was primarily infilled with late Jurassic and early Cretaceous shallow-marine and continental sediments. Two wells namely; D-D1 and E-AP1 were studied in order to evaluate the petrophysics and characterize sandstone reservoirs of the western Bredasdorp basin. This could be achieved by generating and comparing results from core analysis and wireline in order to determine if the two wells are comprised of good quality sandstone reservoirs and if the identified reservoirs produce hydrocarbons. A number of methods were employed in order to characterise and evaluate sandstone reservoir, these included; editing and normalization of raw wireline log data ,classification of lithofacies on the basis of lithology, sedimentary structures, facies distribution, grain size variation, sorting of grains, fossils and bioturbation; calibration of log and core data to determine parameters for petrophysical interpretation; volume of clay; determination of porosity, permeability and fluid saturation, cut-off determination to distinguish between pay and non-pay sands. Borehole D-D1 is located in the western part of the Bredasdorp Basin. Only two reservoirs in well D-D1 indicated to have pay parameters with an average porosity ranging from 11.3% to 16%, average saturation from 0.6% to 21.5% and an volume of clay from 26.5% to 31.5%. This well was abandoned due to poor oil shows according to the geological well completion report. On the contrary well E-AP1 situated in the northwestern section of the basin showed good quality reservoir sandstones occurring in the 19082m to 26963m intervals though predominantly water saturated. Pay parameters for all five reservoirs in this well showed zero or no average porosity, saturation and volume of clay.
Anazia, Oge. „Chemistry of Zirconia and Its Bioanalytical Applications“. TopSCHOLAR®, 2009. http://digitalcommons.wku.edu/theses/127.
Der volle Inhalt der QuelleHemmer, Julie. „Hydro-mechanical coupling in a deformable dual-scale fibrous reinforcement : from mesoscale characterization and modeling to liquid resin infusion process simulation“. Thesis, Ecole centrale de Nantes, 2018. http://www.theses.fr/2018ECDN0044/document.
Der volle Inhalt der QuelleA current aim of wind turbine industries is to produce large structural parts at reduced costs. In this context, manufacture composite blades made of quasi-unidirectional non-crimp fabrics (quasi-UD NCF) using the infusion process is competitive on both mechanical and cost aspects. The infusion process involves an unloading phenomenon due to the vacuum bag flexibility. Additionally, during the impregnation, NCFs exhibit a dual-scale flow. Usual modeling of both phenomena assumes that the fibrous preform is a continuous medium with a varying permeability. Nonetheless, the permeability is affected by the meso-pores size and spatial distribution, which depend on the compaction state. The goal of this thesis is thus to characterize experimentally the flow-induced microstructural evolution of a quasi-UD NCF during the infusion process, and to quantify the impact of thismicrostructural reorganization on relevant macroscopic parameters, such as modelled in-plane permeability as well as computed filling time of parts. In situ infusion process has been conducted inside X-ray Computed Tomography device to capture a dual-scale fibrous microstructure prior and after the infusion process. Additionally, a simplified model has been proposed to predict the in-plane permeability and thus to evaluate the influence of the microstructural reorganization on it. Then, a numerical tool has been developed to account for dual-scale flow in a bidisperse deformable fibrous media. The impact of the dual-scale unloading on themacroscopic filling time of parts has been established. A mechanical investigation of the towbehavior during the infusion process has been additionally carried out experimentally to better understand the quasi-UD NCF behavior. From these results, a hyperelastic model has been proposed to predict the 3D mechanical behavior of tows during the dry loading phase, prior to the infusion process
Bloxson, Julie M. „Characterization of the Porosity Distribution within the Clinton Formation, Ashtabula County, Ohio by Geophysical Core and Well Logging“. Kent State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=kent1341879463.
Der volle Inhalt der QuelleKhosravi, Mardkhe Maryam. „Facile Synthesis and Characterization of a Thermally Stable Silica-Doped Alumina with Tunable Surface Area, Porosity, and Acidity“. BYU ScholarsArchive, 2014. https://scholarsarchive.byu.edu/etd/3968.
Der volle Inhalt der QuelleMayercsik, Nathan Paul. „Characterization of multiscale porosity in cement-based materials: effects of flaw morphology on material response across size and time scales“. Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/55308.
Der volle Inhalt der QuelleDziubla, Thomas D. Lowman Anthony M. „Macroporous hydrogels as vascularizable soft tissue-implant interfaces : materials characterization, in vitro evaluation, computer simulations, and applications in implantable drug delivery devices /“. Philadelphia : Drexel University, 2002. http://dspace.library.drexel.edu/handle/1721.1/36.
Der volle Inhalt der QuelleAsik, Emin Erkan. „Characterization And Fatigue Behaviour Of Ti-6al-4v Foams“. Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614570/index.pdf.
Der volle Inhalt der Quellem were mixed with spherical magnesium powders sieved to an average size of 375 &mu
m, and then the mixtures were compacted with a hydraulic press under 500 MPa pressure by using a double-ended steel die and finaly, the green compacts were sintered at 1200
Will, Robert A. „The integration of seismic anisotropy and reservoir performance data for characterization of naturally fractured reservoirs using discrete feature network models“. Texas A&M University, 2004. http://hdl.handle.net/1969.1/542.
Der volle Inhalt der QuelleLee, Soon Gi. „Quantitative Characterization of Processing-Microstructure-Properties Relationships in Pressure Die-Cast Mg Alloys“. Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/11552.
Der volle Inhalt der QuelleToelle, Brian E. „Use of 3D Seismic Azimuthal Iso-Frequency Volumes for the Detection and Characterization of High Porosity/Permeability Zones in Carbonate Reservoirs“. Thesis, West Virginia University, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=3538201.
Der volle Inhalt der QuelleAmong the most important properties controlling the production from conventional oil and gas reservoirs is the distribution of porosity and permeability within the producing geologic formation. The geometry of the pore space within these reservoirs, and the permeability associated with this pore space geometry, impacts not only where production can occur and at what flow rates but can also have significant influence on many other rock properties. Zones of high matrix porosity can result in an isotropic response for certain reservoir properties whereas aligned porosity/permeability, such as open, natural fracture trends, have been shown to result in reservoirs being anisotropic in many properties.
The ability to identify zones within a subsurface reservoir where porosity/permeability is significantly higher and to characterize them according to their geometries would be of great significance when planning where new boreholes, particularly horizontal boreholes, should be drilled. The detection and characterization of these high porosity/permeability zones using their isotropic and anisotropic responses may be possible through the analysis of azimuthal (also referred to as azimuth-limited) 3D seismic volumes.
During this study the porosity/permeability systems of a carbonate, pinnacle reef within the northern Michigan Basin undergoing enhanced oil recovery were investigated using selected seismic attributes extracted from azimuthal 3D seismic volumes. Based on the response of these seismic attributes an interpretation of the geometry of the porosity/permeability system within the reef was made. This interpretation was supported by well data that had been obtained during the primary production phase of the field. Additionally, 4D seismic data, obtained as part of the CO2 based EOR project, supported reservoir simulation results that were based on the porosity/permeability interpretation.
Askengren, Albert. „Evaluation of tomographic methods for limestone characterization : Using synchrotron-based X-ray tomography todetermine porosity, internal structure andinternal distributions in limestone“. Thesis, Umeå universitet, Institutionen för fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-184937.
Der volle Inhalt der QuelleTekin, Cevdet Murat. „Mechanical Characterization And Modelling Of Porous Polymeric Materials Manufactured By Selective Laser Sintering“. Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12611272/index.pdf.
Der volle Inhalt der Quelles ratio of uniform porous specimens with known porosities are determined through standardized mechanical tests for polymeric materials. The mechanical property variation profiles in graded materials are determined using the mechanical properties of uniform parts. The mechanical behavior of uniform and graded materials under applied loads are modeled using finite element method and simulation results are compared to the results of mechanical tests performed on graded materials. In addition, feasibility of producing resin filled composite parts from these uniform and graded porous parts are sought. Porous parts (both uniformly and graded) that are infiltrated with epoxy resin have been characterized mechanically and the results have been compared with the uninfiltrated porous parts.
Mosavel, Haajierah. „Petrophysical characterization of sandstone reservoirs through boreholes E-S3, E-S5 and F-AH4 using multivariate statistical techniques and seismic facies in the Central Bredasdorp Basin“. Thesis, University of the Western Cape, 2014. http://hdl.handle.net/11394/3984.
Der volle Inhalt der QuelleThe thesis aims to determine the depositional environments, rock types and petrophysical characteristics of the reservoirs in Wells E-S3, E-S5 and F-AH4 of Area X in the Bredasdorp Basin, offshore South Africa. The three wells were studied using methods including core description, petrophysical analysis, seismic facies and multivariate statistics in order to evaluate their reservoir potential. The thesis includes digital wireline log signatures, 2D seismic data, well data and core analysis from selected depths. Based on core description, five lithofacies were identified as claystone (HM1), fine to coarse grained sandstone (HM2), very fine to medium grained sandstone (HM3), fine to medium grained sandstone (HM4) and conglomerate (HM5). Deltaic and shallow marine depositional environments were also interpreted from the core description based on the sedimentary structures and ichnofossils. The results obtained from the petrophysical analysis indicate that the sandstone reservoirs show a relatively fair to good porosity (range 13-20 %), water saturation (range 17-45 %) and a predicted permeability (range 4- 108 mD) for Wells E-S3, E-S5 andF-AH4. The seismic facies model of the study area shows five seismic facies described as parallel, variable amplitude variable continuity, semi-continuous high amplitude, divergent variable amplitude and chaotic seismic facies as well as a probable shallow marine, deltaic and submarine fan depositional system. Linking lithofacies to seismic facies maps helped to understand and predict the distribution and quality of reservoir packages in the studied wells
Vanterpool, Jessica. „Combustion Synthesis and Characterization of Porous NiTi Intermetallic For Structural Application“. Master's thesis, University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5719.
Der volle Inhalt der QuelleM.S.M.E.
Masters
Mechanical and Aerospace Engineering
Engineering and Computer Science
Mechanical Engineering; Thermo-Fluids
Soares, Gambarini Gabriela. „Influence of highly contrasted dual-scale porosity carbon interlock fabrics on permeability, flow-induced deformation and saturation during CRTM process : Experimental characterization and modeling“. Electronic Thesis or Diss., Ecole centrale de Nantes, 2023. http://www.theses.fr/2023ECDN0018.
Der volle Inhalt der QuelleA primary objective of this thesis is to developa permeability measurement methodology thataccurately characterizes the full permeabilitytensor of a carbon interlock fabric used in themanufacture of aircraft turbine blades using theC-RTM process. The unique characteristics ofthe fabric, including its high thickness andstiffness, its non-transparent fibers and itspronounced dual-porosity scale, presentchallenges when using traditional measurementtechniques.In order to measure the full permeability tensoreconomically and over a wide range of fibervolume fractions, a combination of experimentalmethods has been proposed and applied.The development of an experimental testbench to measure saturation during injectionand the influence of its very strong doubleporosity scale is presented. The results arecomplemented by preliminary mesoscopicnumerical modelling of a representativesimplified geometry.The challenges posed by the pronounceddouble scale of the pore space and the resultingmodes of impregnation of the interlocked fabricjustify the proposed approach of combiningexperimental analysis and modelling, whichmust be pursued in order to study thesemechanisms in greater depth
Abdallah, Jassem. „Polycarbonate-silsesquioxane and polycarbonate-siloxane nanocomposites: synthesis, characterization, and application in the fabrication of porous inorganic films“. Diss., Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/37271.
Der volle Inhalt der QuelleOlsen, Rebecca Elizabeth. „Synthesis, Characterization, and Application of High Surface Area, Mesoporous, Stabilized Anatase TiO2 Catalyst Supports“. BYU ScholarsArchive, 2013. https://scholarsarchive.byu.edu/etd/3884.
Der volle Inhalt der QuelleCherkas, Oxana. „Manufacturing and characterization of porous calcium carbonate for industrial applications“. Thesis, Le Mans, 2018. http://www.theses.fr/2018LEMA1003.
Der volle Inhalt der QuelleThe aim of this thesis was to synthesize porous calcium carbonate (CaCO3) particles for industrial applications as fillers for cigarette paper as well as a matrix for flavour encapsulation. We show that we can control the fabrication of porous particles of vaterite with a given size by tuning the parameters of synthesis. After the synthesis, the stability of vaterite in aqueous solution and at high temperature was studied. The phase transition was analyzed by XRD and coherent X-ray diffraction imaging that allows us to have a 3D-image of the particles. Finally, particles of 1-2 μm size with 20% porosity were reproducibly synthesized. Prepared vaterite particles were introduced as a filler in cigarette paper, with the goal to evaluate their impact on the physical properties of papers as well as on the reduction of some harmful compounds during the smoking. It was demonstrated that the use of vaterite can increase the diffusivity of paper and reduce the CO emission in the mainstream smoke. We also show that the use of X-ray absorption and diffraction can provide an estimation of the filler fraction and porosity of the papers in a non-destructive way. The encapsulation of flavours in CaCO3 particles was performed by co-crystallization and molecular inclusion. It was demonstrated that CaCO3 can be used as a matrix for flavour impregnation with more than 55% of encapsulation efficiency. Flavoured particles was added in paper for sensory evaluation. We shown that it is possible, to flavour the final product with flavoured calcium carbonate particles
Xiang, Maiqi. „Aerosol sampling and characterization technique using TEM porous grids“. Thesis, Compiègne, 2021. http://www.theses.fr/2021COMP2611.
Der volle Inhalt der QuelleCharacterization and analysis of airborne solid nano/micrometric particles have received considerable attention. The representative collection of particles to be analyzed is a fundamental requirement. The recently developed aerosol sampler called Mini Particle Sampler (MPS), which is equipped with a porous Transmission Electron Microscopy (TEM) grid, renders particle sampling convenient. However, the research for this useful sampling system is still in the initial stage. The thesis improves and quantifies the MPS sampling system. Besides, a new method of pollutant mass characterization is developed based on the optimizedsampling system. The sampling efficiency of the sampling system for particles with mobility diameters ranging from 5 to 100 nm is mainly investigated. According to the sensitivity analysis tof the parameters in the whole setup carried out by the Taguchi method, salt concentration of the atomizer, high-voltage polarity in the Differential Mobility Analyzer (DMA), sampling efficiency assessment method, sampling temperature, and porosity of the porous TEM gridminimally affect the collection efficiency. Small filter pore size, high flowrate, and denserparticles promote particle capturing, which are the main parameters. Based on the investigation of the filtration mechanisms of TEM grids and the comparison of available theoretical models, a method for experimental collection efficiency analysis combined with theoretical modeling is developed by considering the model’s applicability. Using this method, the effects of the main parameters mentioned above are compared between experiments andtheories. The sampling technology is optimized and the minimum collection efficiency isup to 40% by adjusting the parameter settings of the sampling system. In addition, accordingto the Monte-Carlo methods, sampling efficiency uncertainties from measured data andtheoretical models are generally less than 1% and 9%, respectively. Most sampling efficienciesmeasured data are covered by the efficiency uncertainty range simulated by models.Sobol variance-based sensitivity analysis shows that pore size and flowrate contribute significantly to the uncertainties, and require control to improve the efficiency precision. Besides, Cunningham correction factor is also a sensitivity parameter. Based on the above development of the MPS sampling system, a quantitative method is proposed to characterize the elemental mass concentration of airborne nano/micrometric particles via particle sampling and TEM - Energy Dispersive X-ray Spectroscopy (EDS). The principle is to collect airborne particles on a TEM grid, then add a certain mass of reference particles on it, and determine the relative percentages of all elements (reference and unknown particles) via EDS. Regardless of the sampling condition, the quantitative and homogeneously collection of monodisperse RbCl, CsCl, NaCl particles on the TEM grid could be achieved. For all the tested conditions, when depositing divers kinds of quantified airborne particles on one TEM grid, the absolute deviations between theoretical element mass percentages and experimental ratios measured by EDS remain lower than 10%, which confirms that the proposed method could be used for mass characterization of elements in an unknown aerosol. RbCl has been preferred as a reference since its rarity in usual airborne particles and having a low toxicity. The developed method has been used for characterizing aerosol released by the friction between serial pad and braking disc. The mass concentration of Fe in the braking aerosol is calculated as 0.105 μg/L using this method, which is consistent with the concentration range estimated from the data of Scanning Mobility Particle Sizer (SMPS) and Aerodynamic Particle Sizer (APS)
CIMO', Giulia. „CHARACTERIZATION OF CHEMICAL AND PHYSICAL PROPERTIES OF BIOCHAR FOR ENERGY PURPOSES AND ENVIRONMENTAL RESTORATION“. Doctoral thesis, Università degli Studi di Palermo, 2014. http://hdl.handle.net/10447/90867.
Der volle Inhalt der QuellePahnke, P. D. „Characterization of Cretaceous Chalk Microporosity Related to Depositional Texture: Based Upon Study of the Upper Cretaceous Niobrara Formation, Denver-Julesburg Basin, Colorado and Wyoming“. BYU ScholarsArchive, 2014. https://scholarsarchive.byu.edu/etd/5538.
Der volle Inhalt der QuelleKang, Jiyuan. „MORPHOLOGY AND PERFORMANCE CHARACTERIZATION OF INTUMESCENT COATINGS FOR FIRE PROTECTION OF STRUCTURAL STEEL“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=case1544112058459729.
Der volle Inhalt der QuelleJolley, Chelsea Anne. „Basinward Trends in Fluvial Architecture, Connectivity, and Reservoir Characterization of the Trail Member, Ericson Sandstone, Mesaverde Group in Wyoming, Utah, and Colorado, USA“. BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/8135.
Der volle Inhalt der QuelleKim, Jin Young. „Synthesis and Characterization of Bulk Metallic Glasses, Composites and Hybrid Porous Structures by Powder Metallurgy of Metallic Glassy Powders“. Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-170795.
Der volle Inhalt der QuelleMetallische Gläser weisen viele attraktive mechanische, magnetische und chemische Eigenschaften auf. Aufgrund der fehlenden Kristallstruktur zeigen metallische Gläser bemerkenswerte mechanische Eigenschaften, einschließlich höherer spezifischer Festigkeit, höherer Härte und größerer Bruchfestigkeit als Keramik. Der technologischen Durchbruch metallischer Gläser wird jedoch bis heute stark von ihremspröden Bruchverhalten behindert. Deshalb wurden verschiedene Herstellungsverfahren entwirkt, um sowohl die plastische Verformung der metallischer Massivgläser zu erhöhen, als auch um die mechanischen Eigenschaften generell zu verbessern. Eine mögliche Methode, zur Erhöhung der Plastizität und zur Beeinflussung der mechanischen Eigenschaften der metallischen Gläser ist der Einbau zweiter Phasen, wie z.B. durch Fremdpartikel Verstärkung oder Poren in Kompositen. Die Scherband bewegung wird durch die Wechselwirkung mit zweiten Phasen behindert, und gleichzeitig werden durch die in den Grenzflächen entstehenden Spannungsspitzen zwischen der zweiten Phase und der Matrix neue Scherbänder initiert. Dies führt zur Bildung einer Vielzahl von Scherbändern, was eine höhere plastische Dehnung zur Folge hat, da die Deformationsenergie auf ein größeres Volumen verteilt wird. In der vorliegenden Arbeit wurden Ni59Zr20Ti16Si2Sn3 Massivglas und mit Messing- verstärkte Komposite durch Kugelmahlen und Heißpressen mit anschließender Extrusion von Ni59Zr20Ti16Si2Sn3 Pulver oder Ni59Zr20Ti16Si2Sn3 Pulver mit 40 vol.% Messing Partikeln hergestellt. Neben der Herstellung der Ni59Zr20Ti16Si2Sn3 Komposite mit Messing Partikeln, wurden auch Ni59Zr20Ti16Si2Sn3 Komposite mit definierter Porösität durch die selektive Auflösung der zweiten Phase erzeugt. Die verwendete Mischung von Messing und metallischem Glaspulver wurde über zwei verschiedene Ansätzen hergestellt: die Pulver wurden manuell gemischt oder gemahlen, um die optimale Größe und Morphologie der zweiten Phase in den Komositen zu erzeugen. Das Sintern der Pulver erfolgte bei Temperaturen im Bereich der unterkühlten Schmelze, wobei die Legierung eine starke Abnahme der Viskosität zeigte, mit Hilfe optimierter Sinterparameter, die nach der Analyse des Kristallisationsverhaltens der gläsernen Phase ausgewählt wurden, um deren Kristallisation während der Konsolidierung zu vermeiden. Kugelmahlen hat einen signifikanten Einfluss auf die Mikrostruktur der gemahlenen Pulver: Eine verfeinerte Lamellare Struktur, teils bestehend aus Glas und teils aus Messing, wird durch mechanische Verformung gebildet. Kugelmahlen reduziert jedoch den amorphen Anteil der Komposite durch mechanische induzierte Kristallisation und die Reaktion der Glas- und Messing- Phasen durch Erwärmung. Das Kugelmahlen der Komposite (Pulver) und das darauf folgende Sintern führte zur eine Absenkung der freien Enthalpie der amorphen Phase um ca. 50%. Ni59Zr20Ti16Si2Sn3 metallische Massivgläser, welche durch Heißpressen hergestellt werden, weisen eine höhere Streckgrenze von 2.28 GPa als das gegossene Ni59Zr20Ti16Si2Sn3 Massivglas (2.2 GPa) auf. Die mechanischen Eigenschaften der mit Messing Ni59Zr20 Ti16Si2Sn3 verstärkten Komposite sind abhängig von der Kontrolle der Mikrostruktur zwischen den zweiten Phasen und der Matrixphase durch die verschiedenen Verfahren zur Herstellung von Pulvermischungen. Die Festigkeiten der Komposite, welche durch Handmischen und Heißpressen mit nachfolgender Extrusion hergestellt wurden, erhöhten sich von 500 MPa für reines Messing bis auf 740 und 925 MPa für die Komposite mit 40 und 60 Vol. % Glaspartikel- Verstärkung durch Handmischen. Die Festigkeiten erhöhten sich nochmals auf 1240 und 1640 MPa für die Komposite mit 40 und 60 Vol. % an Glaspartikel-Verstärkung mit lamellare Stuktur, die durch Kugelmahlen hergestellt würden. Die Ursache hier für liegt in der Wirkung der Ligamentabmessungen zwischen den Matrixbestandteilen hinsichtlich der Verfestigung der Komposite. Die Porösität im metallischen Glas wurde durch die selektive Auflösung der flüchtigen Messingphasen in den Kompositen mit Salpetersäure-Lösung erhalten. Die Mikrostuktur der porösen metallischen Gläser besteht aus stark elongiert geschichteten Porenstrukturen und/oder unregelmäßig geformten Poren. Die durchschnittliche Größe einer Pore hängt von den behandelnden Parametern ab und kann von 0.4–15 µm variieren. Weitere poröse Proben wurden ausgehend von verschiedenen extrudierten Komposit-Precursoren aus handgemischten und kugelgemahlenen Pulvermixturen erzeugt. Dies führte zu angepassten hybrid-porösen Strukturen bestehend aus einer Kombination von großen und kleinen Poren. Die spezifische Oberfläche des porösen Glaspulvers gemessen mit Hilfe der BET- Methode, beträgt 16m2/g, wohingegen das atomisierte Ni59Zr20Ti16Si2Sn3 MG Ausgangspulver eine spezifische Oberfläche von 0.29 m2/g besitzt. Dies weist darauf hin, dass das Mahlen eine Vergrößerung der Oberfläche durch die Verfeinerung der flüchtigen Messingphase induziert. Die spezifische Oberfläche der porösen-metallischen Gläser beträgt 10 m2/g und entsteht durch die Zerstörung der porösen Struktur während der selektiven Auflösung der nanoskaligen flüchtigen Phase. Obwohl das Kugelmahlen der Komposite (Pulver) und die darauf folgende Konsolidierung zwar den amorphen Anteil um etwa 50% reduziert, bietet die Pulvermetallurgische Herstellung durch die Verwendung von gläsernen Phasen mit verbesserter Stabilität gegenüber mechanisch induzierter Kristallisation, sowie einer reduzierten Affinität mit der flüchtigen Messingphase zur Vermeidung von unerwünschten Reaktionen während des Prozesses eine Möglichkeit, hochaktive poröse metallische Gläser für funktionelle Anwendungen, wie z.B. Katalyse, zu entwickeln. Hier ist eine schnelle Transport von Reaktanten und Produkten, welcher von den großen Poren, sowie eine hohe katalytische Aktivität, die von kleinen Poren und einer großen Oberfläche sichergestellt wird wesentlich. Daher wurden Untersuchungen zur Gasabsorptionsfähigkeit von porösem metallischen Glaspulver durchgeführt, um die Möglichkeit der Ersetzung von konventionellen Trägermaterialen bewerten zu können. Diese ersten Versuche zeigen die grundsäLzliche Eignung nano poröse metallischer Gläser zur Herstellung von porösen Strukturen mit einstellbarer Porenarchitektur auf die Langfristig für spezifische funktionelle Anwendungen von Interesse sein könnten
Kim, Jin Young. „Synthesis and Characterization of Bulk Metallic Glasses, Composites and Hybrid Porous Structures by Powder Metallurgy of Metallic Glassy Powders“. Doctoral thesis, Technische Universität Dresden, 2014. https://tud.qucosa.de/id/qucosa%3A28746.
Der volle Inhalt der QuelleMetallische Gläser weisen viele attraktive mechanische, magnetische und chemische Eigenschaften auf. Aufgrund der fehlenden Kristallstruktur zeigen metallische Gläser bemerkenswerte mechanische Eigenschaften, einschließlich höherer spezifischer Festigkeit, höherer Härte und größerer Bruchfestigkeit als Keramik. Der technologischen Durchbruch metallischer Gläser wird jedoch bis heute stark von ihremspröden Bruchverhalten behindert. Deshalb wurden verschiedene Herstellungsverfahren entwirkt, um sowohl die plastische Verformung der metallischer Massivgläser zu erhöhen, als auch um die mechanischen Eigenschaften generell zu verbessern. Eine mögliche Methode, zur Erhöhung der Plastizität und zur Beeinflussung der mechanischen Eigenschaften der metallischen Gläser ist der Einbau zweiter Phasen, wie z.B. durch Fremdpartikel Verstärkung oder Poren in Kompositen. Die Scherband bewegung wird durch die Wechselwirkung mit zweiten Phasen behindert, und gleichzeitig werden durch die in den Grenzflächen entstehenden Spannungsspitzen zwischen der zweiten Phase und der Matrix neue Scherbänder initiert. Dies führt zur Bildung einer Vielzahl von Scherbändern, was eine höhere plastische Dehnung zur Folge hat, da die Deformationsenergie auf ein größeres Volumen verteilt wird. In der vorliegenden Arbeit wurden Ni59Zr20Ti16Si2Sn3 Massivglas und mit Messing- verstärkte Komposite durch Kugelmahlen und Heißpressen mit anschließender Extrusion von Ni59Zr20Ti16Si2Sn3 Pulver oder Ni59Zr20Ti16Si2Sn3 Pulver mit 40 vol.% Messing Partikeln hergestellt. Neben der Herstellung der Ni59Zr20Ti16Si2Sn3 Komposite mit Messing Partikeln, wurden auch Ni59Zr20Ti16Si2Sn3 Komposite mit definierter Porösität durch die selektive Auflösung der zweiten Phase erzeugt. Die verwendete Mischung von Messing und metallischem Glaspulver wurde über zwei verschiedene Ansätzen hergestellt: die Pulver wurden manuell gemischt oder gemahlen, um die optimale Größe und Morphologie der zweiten Phase in den Komositen zu erzeugen. Das Sintern der Pulver erfolgte bei Temperaturen im Bereich der unterkühlten Schmelze, wobei die Legierung eine starke Abnahme der Viskosität zeigte, mit Hilfe optimierter Sinterparameter, die nach der Analyse des Kristallisationsverhaltens der gläsernen Phase ausgewählt wurden, um deren Kristallisation während der Konsolidierung zu vermeiden. Kugelmahlen hat einen signifikanten Einfluss auf die Mikrostruktur der gemahlenen Pulver: Eine verfeinerte Lamellare Struktur, teils bestehend aus Glas und teils aus Messing, wird durch mechanische Verformung gebildet. Kugelmahlen reduziert jedoch den amorphen Anteil der Komposite durch mechanische induzierte Kristallisation und die Reaktion der Glas- und Messing- Phasen durch Erwärmung. Das Kugelmahlen der Komposite (Pulver) und das darauf folgende Sintern führte zur eine Absenkung der freien Enthalpie der amorphen Phase um ca. 50%. Ni59Zr20Ti16Si2Sn3 metallische Massivgläser, welche durch Heißpressen hergestellt werden, weisen eine höhere Streckgrenze von 2.28 GPa als das gegossene Ni59Zr20Ti16Si2Sn3 Massivglas (2.2 GPa) auf. Die mechanischen Eigenschaften der mit Messing Ni59Zr20 Ti16Si2Sn3 verstärkten Komposite sind abhängig von der Kontrolle der Mikrostruktur zwischen den zweiten Phasen und der Matrixphase durch die verschiedenen Verfahren zur Herstellung von Pulvermischungen. Die Festigkeiten der Komposite, welche durch Handmischen und Heißpressen mit nachfolgender Extrusion hergestellt wurden, erhöhten sich von 500 MPa für reines Messing bis auf 740 und 925 MPa für die Komposite mit 40 und 60 Vol. % Glaspartikel- Verstärkung durch Handmischen. Die Festigkeiten erhöhten sich nochmals auf 1240 und 1640 MPa für die Komposite mit 40 und 60 Vol. % an Glaspartikel-Verstärkung mit lamellare Stuktur, die durch Kugelmahlen hergestellt würden. Die Ursache hier für liegt in der Wirkung der Ligamentabmessungen zwischen den Matrixbestandteilen hinsichtlich der Verfestigung der Komposite. Die Porösität im metallischen Glas wurde durch die selektive Auflösung der flüchtigen Messingphasen in den Kompositen mit Salpetersäure-Lösung erhalten. Die Mikrostuktur der porösen metallischen Gläser besteht aus stark elongiert geschichteten Porenstrukturen und/oder unregelmäßig geformten Poren. Die durchschnittliche Größe einer Pore hängt von den behandelnden Parametern ab und kann von 0.4–15 µm variieren. Weitere poröse Proben wurden ausgehend von verschiedenen extrudierten Komposit-Precursoren aus handgemischten und kugelgemahlenen Pulvermixturen erzeugt. Dies führte zu angepassten hybrid-porösen Strukturen bestehend aus einer Kombination von großen und kleinen Poren. Die spezifische Oberfläche des porösen Glaspulvers gemessen mit Hilfe der BET- Methode, beträgt 16m2/g, wohingegen das atomisierte Ni59Zr20Ti16Si2Sn3 MG Ausgangspulver eine spezifische Oberfläche von 0.29 m2/g besitzt. Dies weist darauf hin, dass das Mahlen eine Vergrößerung der Oberfläche durch die Verfeinerung der flüchtigen Messingphase induziert. Die spezifische Oberfläche der porösen-metallischen Gläser beträgt 10 m2/g und entsteht durch die Zerstörung der porösen Struktur während der selektiven Auflösung der nanoskaligen flüchtigen Phase. Obwohl das Kugelmahlen der Komposite (Pulver) und die darauf folgende Konsolidierung zwar den amorphen Anteil um etwa 50% reduziert, bietet die Pulvermetallurgische Herstellung durch die Verwendung von gläsernen Phasen mit verbesserter Stabilität gegenüber mechanisch induzierter Kristallisation, sowie einer reduzierten Affinität mit der flüchtigen Messingphase zur Vermeidung von unerwünschten Reaktionen während des Prozesses eine Möglichkeit, hochaktive poröse metallische Gläser für funktionelle Anwendungen, wie z.B. Katalyse, zu entwickeln. Hier ist eine schnelle Transport von Reaktanten und Produkten, welcher von den großen Poren, sowie eine hohe katalytische Aktivität, die von kleinen Poren und einer großen Oberfläche sichergestellt wird wesentlich. Daher wurden Untersuchungen zur Gasabsorptionsfähigkeit von porösem metallischen Glaspulver durchgeführt, um die Möglichkeit der Ersetzung von konventionellen Trägermaterialen bewerten zu können. Diese ersten Versuche zeigen die grundsäLzliche Eignung nano poröse metallischer Gläser zur Herstellung von porösen Strukturen mit einstellbarer Porenarchitektur auf die Langfristig für spezifische funktionelle Anwendungen von Interesse sein könnten.
Jaradat, Rasheed Abdelkareem. „Prediction of reservoir properties of the N-sand, vermilion block 50, Gulf of Mexico, from multivariate seismic attributes“. Diss., Texas A&M University, 2003. http://hdl.handle.net/1969.1/2236.
Der volle Inhalt der QuelleClément, Phillipe. „Détermination des propriétés mécaniques de céramiques poreuses par essais de microindentation instrumentée sphérique“. Thesis, Lyon, INSA, 2013. http://www.theses.fr/2013ISAL0030/document.
Der volle Inhalt der QuelleThe objective of this study is to develop a methodology to characterize the mechanical behaviour of porous inorganic materials. Spherical instrumented indentation tests were used to determine the mechanical properties of a model material, gypsum, with two different porosities (30 and 60% vol.). Classical analytical methods, initially developed for nano-indentation, were used to extract the hardness and the elastic modulus of both materials, as well as stress-strain indentation curves. A methodology has been detailed in order to apply spherical indentation test to study high porous ceramics. To complete this analytical analysis, a numerical approach is used to identify an elastoplastic constitutive law for the material model. A 2D axisymmetric finite element model was developed to simulate spherical indentation tests. An inverse identification module, MIC2M, was then used to identify parameters associated to Drücker-Prager criterion (cohesion, friction and dilatancy) by minimizing the error between the experimental and the simulated indentation curves. These parameters were validated through the numerical simulation of a Vickers indentation test. Uniaxial compression and oedometer tests were also carried out on cylindrical samples to estimate the accuracy of the identified parameters. The mechanisms occurring during indentation were investigated using RX tomography and SEM. A large densified zone was noted below the indented area, with extensive gypsum crystal fracture. No macroscopic brittle crack could be observed confirming the differences between the mechanical behaviour of high porous ceramics and dense ceramics. The methodology developed in this study was applied to calcium phosphate cements, widely used for bone substitution. In-vitro degradation tests were performed on cylindrical samples of cements during 2 months into a refreshed Phosphate Buffered Saline solution. The micro-indentation method was enabled to follow mechanical properties of degraded samples and was discriminant enough to monitor the degradation process and its kinetics. Results showed a good correlation between evolutions of mechanical and physico-chemical properties of the cement investigated by X-ray diffraction and SEM. Thus, after initial cement dissolution, precipitation of more stable phosphate calcium phases implied an increase of the mechanical properties during aging. This method seems to be a promising tool for monitoring biomedical explants properties and, more generally, high porous ceramics
AKANI, MOHAMED. „Elaboration du silicium polycristallin par projection plasma : microstructure et proprietes electriques“. Paris 6, 1986. http://www.theses.fr/1986PA066613.
Der volle Inhalt der QuelleJanati, Idrissi Abderrazak. „Caractérisation physico-chimique des alumines par le concept d'objets fractals“. Poitiers, 1988. http://www.theses.fr/1988POIT2305.
Der volle Inhalt der QuelleMeng, Qingguo. „Preparation, characterization and luminescent properties of organic-inorganic hybrids processed by wet impregnation of mesoporous silica“. Clermont-Ferrand 2, 2005. http://www.theses.fr/2005CLF22566.
Der volle Inhalt der QuelleCARUSO, VALENTINA. „DEGRADATION OF ORGANIC AND MINERAL PHASES IN BURIED HUMAN REMAINS: THE EARTH SCIENCES ANALYTICAL CHARACTERIZATION“. Doctoral thesis, Università degli Studi di Milano, 2017. http://hdl.handle.net/2434/478504.
Der volle Inhalt der QuelleSidlipura, Ravi Kumar Sujith Kumar. „Multi-modal and multiscale image analysis work flows for characterizing through-thickness impregnation of fiber reinforced composites manufactured by simplified CRTM process“. Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Lille Douai, 2024. http://www.theses.fr/2024MTLD0010.
Der volle Inhalt der QuelleThis thesis presents an experimental study to advance thermoplastic Compression Resin Transfer Molding (CRTM), focusing on industrial efficiency, sustainability, and recyclability goals aligned with the Sustainable Development Goals for Industry, Innovation, and Climate Action. By addressing multi-scale resin flow complexity in CRTM, this research investigates transverse flow and process-induced porosity at the meso scale of glass fiber bundles to improve impregnation uniformity and compaction control, bridging theoretical frameworks with scalable applications. The study focuses on a thermoplastic polypropylene matrix reinforced with six layers of bidirectional UD woven glass fibers ([0/90]3) consolidated on a CRTM setup. The “Simplified CRTM” method is developed on an industrial press, using displacement-controlled compaction ratios. This method omits active resin injection, relying on a uniformly distributed viscous polymer pool beneath the unsaturated preform to drive resin flow uniformly with a unidirectional flow path. Controlled displacement and pressure optimize resin paths, manage fiber volume fraction, and reduce porosity. Three multi-step compaction configurations are evaluated: Configuration 1 (Reference): Uses force compaction as a baseline for comparing resin distribution and fiber structure. Configuration 2 (simplified CRTM): Displacement-controlled compaction enhances resin infiltration but faces challenges like edge race-tracking and fiber volume fraction (Vf) variability, affecting impregnation. Configuration 3 (simplified CRTM with Edge Sealing): Introduces high-temperature sealant tape at mold edges, limiting resin escape, maintaining transverse flow, and reducing porosity and race-tracking. Configuration 3 edge-sealing technique establishes a reproducible process for high quality CRTM composites. An advanced 2D multi-modal imaging protocol, tailored for partially impregnated samples produced via simplified CRTM with unfilled spaces and fragile microstructures, includes polarized light microscopy, fluorescence microscopy, and scanning electron microscopy for qualitative and quantitative characterization. An original two-step polishing process preserves surface integrity, and image post-processing workflows quantify impregnation quality and void distribution. The study is completed with a fine evaluation of the impregnation mechanisms using X-ray micro computed tomography technique (micro-CT) relying on helicoidal inspection method. Results demonstrate that compaction parameters directly impact impregnation level, reaching an impregnation limit. This thesis establishes a scalable, data-driven CRTM framework bridging laboratory experimentation with industrial requirements for high-performance thermoplastic composites. It offers insights into streamlined protocols and microstructure-based analysis, enhancing understanding of the interplay between impregnation and permeability in CRTM. These findings align with precision demands in sectors like automotive and aerospace, where CRTM composites are crucial for structural applications