Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Poroelastodynamics“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Poroelastodynamics" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Poroelastodynamics"
Schanz, Martin. „Fast multipole method for poroelastodynamics“. Engineering Analysis with Boundary Elements 89 (April 2018): 50–59. http://dx.doi.org/10.1016/j.enganabound.2018.01.014.
Der volle Inhalt der QuelleQi, Quan, und Thomas L. Geers. „Doubly asymptotic approximations for transient poroelastodynamics“. Journal of the Acoustical Society of America 102, Nr. 3 (September 1997): 1361–71. http://dx.doi.org/10.1121/1.420097.
Der volle Inhalt der QuelleIgumnov, Leonid A., Andrey Petrov und Alexander V. Amenitskiy. „Laplace Domain Boundary Element Method for 3D Poroelastodynamics“. Applied Mechanics and Materials 709 (Dezember 2014): 117–20. http://dx.doi.org/10.4028/www.scientific.net/amm.709.117.
Der volle Inhalt der QuelleIgumnov, Leonid A., Svetlana Litvinchuk, Andrey Petrov und Alexander A. Belov. „Boundary-Element Modeling of 3-D Poroelastic Half-Space Dynamics“. Advanced Materials Research 1040 (September 2014): 881–85. http://dx.doi.org/10.4028/www.scientific.net/amr.1040.881.
Der volle Inhalt der QuelleLiu, Chao. „Fundamental solutions to the transversely isotropic poroelastodynamics Mandel's problem“. International Journal for Numerical and Analytical Methods in Geomechanics 45, Nr. 15 (24.07.2021): 2260–83. http://dx.doi.org/10.1002/nag.3265.
Der volle Inhalt der QuelleOzyazicioglu, Mehmet. „Sudden Pressurization of a Spherical Cavity in a Poroelastic Medium“. Mathematical Problems in Engineering 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/632634.
Der volle Inhalt der QuelleIgumnov, L. A., S. Yu Litvinchuk und Ya Yu Rataushko. „3D POROELASTODYNAMICS MODELINGWITH THE HELP OF TIME-STEPPING BOUNDARY ELEMENT SCHEME“. Problems of Strength and Plasticity 76, Nr. 3 (2014): 198–204. http://dx.doi.org/10.32326/1814-9146-2014-76-3-198-204.
Der volle Inhalt der QuelleChou, Dean, und Po-Yen Chen. „A machine learning method to explore the glymphatic system via poroelastodynamics“. Chaos, Solitons & Fractals 178 (Januar 2024): 114334. http://dx.doi.org/10.1016/j.chaos.2023.114334.
Der volle Inhalt der QuelleVorobtsov, Igor, Aleksandr Belov und Andrey Petrov. „Development of boundary-element time-step scheme in solving 3D poroelastodynamics problems“. EPJ Web of Conferences 183 (2018): 01042. http://dx.doi.org/10.1051/epjconf/201818301042.
Der volle Inhalt der QuelleIgumnov, L. A., A. N. Petrov und I. V. Vorobtsov. „Analysis of 3D poroelastodynamics using BEM based on modified time-step scheme“. IOP Conference Series: Earth and Environmental Science 87 (Oktober 2017): 082022. http://dx.doi.org/10.1088/1755-1315/87/8/082022.
Der volle Inhalt der QuelleDissertationen zum Thema "Poroelastodynamics"
Bagur, Laura. „Modeling fluid injection effects in dynamic fault rupture using Fast Boundary Element Methods“. Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAE010.
Der volle Inhalt der QuelleEarthquakes due to either natural or anthropogenic sources cause important human and material damage. In both cases, the presence of pore fluids influences the triggering of seismic instabilities.A new and timely question in the community is to show that the earthquake instability could be mitigated by active control of the fluid pressure. In this work, we study the ability of Fast Boundary Element Methods (Fast BEMs) to provide a multi-physic large-scale robust solver required for modeling earthquake processes, human induced seismicity and their mitigation.In a first part, a Fast BEM solver with different temporal integration algorithms is used. We assess the performances of various possible adaptive time-step methods on the basis of 2D seismic cycle benchmarks available for planar faults. We design an analytical aseismic solution to perform convergence studies and provide a rigorous comparison of the capacities of the different solving methods in addition to the seismic cycles benchmarks tested. We show that a hybrid prediction-correction / adaptive time-step Runge-Kutta method allows not only for an accurate solving but also to incorporate both inertial effects and hydro-mechanical couplings in dynamic fault rupture simulations.In a second part, once the numerical tools are developed for standard fault configurations, our objective is to take into account fluid injection effects on the seismic slip. We choose the poroelastodynamic framework to incorporate injection effects on the earthquake instability. A complete poroelastodynamic model would require non-negligible computational costs or approximations. We justify rigorously which predominant fluid effects are at stake during an earthquake or a seismic cycle. To this aim, we perform a dimensional analysis of the equations, and illustrate the results using a simplified 1D poroelastodynamic problem. We formally show that at the timescale of the earthquake instability, inertial effects are predominant whereas a combination of diffusion and elastic deformation due to pore pressure change should be privileged at the timescale of the seismic cycle, instead of the diffusion model mainly used in the literature
Buchteile zum Thema "Poroelastodynamics"
Cheng, Alexander H. D. „Poroelastodynamics“. In Poroelasticity, 475–571. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-25202-5_9.
Der volle Inhalt der QuelleSchanz, Martin. „Poroelastodynamic boundary element formulation“. In Wave Propagation in Viscoelastic and Poroelastic Continua, 77–103. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-540-44575-3_6.
Der volle Inhalt der QuelleDomínguez, J., und R. Gallego. „Boundary Element Approach to Coupled Poroelastodynamic Problems“. In Solid Mechanics and Its Applications, 125–42. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-015-8698-6_7.
Der volle Inhalt der QuelleSchanz, Martin, und Dobromil Pryl. „Boundary Element Formulations for Linear Poroelastodynamic Continua“. In Analysis and Simulation of Multifield Problems, 323–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-36527-3_39.
Der volle Inhalt der QuelleCliment, Natalia, Ionut Moldovan und António Gomes Correia. „FreeHyTE: A Hybrid-Trefftz Finite Element Platform for Poroelastodynamic Problems“. In Lecture Notes in Civil Engineering, 73–86. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77230-7_7.
Der volle Inhalt der QuellePryl, Dobromil, Martin Schanz und Lars Kielhorn. „Poroelastodynamic Boundary Element Method in time domain“. In Poromechanics III - Biot Centennial (1905-2005). Taylor & Francis, 2005. http://dx.doi.org/10.1201/noe0415380416.ch58.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Poroelastodynamics"
Liu, Chao, und Dung T. Phan. „Determination of the Connected and Isolated Porosities by a Poroelastodynamics Model“. In International Petroleum Technology Conference. IPTC, 2024. http://dx.doi.org/10.2523/iptc-23741-ea.
Der volle Inhalt der QuelleSchanz, M. „Fast Multipole Accelerated Boundary Element Method for Poroelastodynamics“. In Sixth Biot Conference on Poromechanics. Reston, VA: American Society of Civil Engineers, 2017. http://dx.doi.org/10.1061/9780784480779.210.
Der volle Inhalt der QuelleLiu, Chao. „Anisotropic Poroelastodynamics Solution and Elastic Moduli Dispersion of a Naturally Fractured Rock“. In Middle East Oil, Gas and Geosciences Show. SPE, 2023. http://dx.doi.org/10.2118/213366-ms.
Der volle Inhalt der QuelleIpatov, A. A., L. A. Igumnov, F. Dell’Isola und S. Yu Litvinchuk. „Application of modified Durbun’s algorithm in solving poroelastodynamic problems via boundary element method“. In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0027676.
Der volle Inhalt der QuelleShih, Po-Jen, und Meng-Cheng Ho. „Modified Steepest-Descent Path Method in Solving Weyl Integration Representation of Vector Wave Bases“. In ASME 2012 Noise Control and Acoustics Division Conference at InterNoise 2012. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ncad2012-1217.
Der volle Inhalt der QuelleLiu, Y., V. Dokhani, Y. Ma, H. Miao und S. Zamiran. „Effects of Dynamic Surge Pressure on Wellbore Stability“. In 57th U.S. Rock Mechanics/Geomechanics Symposium. ARMA, 2023. http://dx.doi.org/10.56952/arma-2023-0164.
Der volle Inhalt der Quelle