Zeitschriftenartikel zum Thema „Pore extra-large“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Pore extra-large.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Pore extra-large" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Kang, Jong Hun, Dan Xie, Stacey I. Zones und Mark E. Davis. „Transformation of Extra-Large Pore Germanosilicate CIT-13 Molecular Sieve into Extra-Large Pore CIT-5 Molecular Sieve“. Chemistry of Materials 31, Nr. 23 (06.11.2019): 9777–87. http://dx.doi.org/10.1021/acs.chemmater.9b03675.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Bhaumik, Asim, Sujit Samanta und Nawal Kishor Mal. „Highly active disordered extra large pore titanium silicate“. Microporous and Mesoporous Materials 68, Nr. 1-3 (März 2004): 29–35. http://dx.doi.org/10.1016/j.micromeso.2003.12.005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Shamzhy, Mariya V., Oleksiy V. Shvets, Maksym V. Opanasenko, Pavel S. Yaremov, Liana G. Sarkisyan, Pavla Chlubná, Arnošt Zukal, V. Reddy Marthala, Martin Hartmann und Jiří Čejka. „Synthesis of isomorphously substituted extra-large pore UTL zeolites“. Journal of Materials Chemistry 22, Nr. 31 (2012): 15793. http://dx.doi.org/10.1039/c2jm31725g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Sarkar, Krishanu, Subhash Chandra Laha und Asim Bhaumik. „A new extra large pore organic–inorganic hybrid silicoaluminophosphate“. J. Mater. Chem. 16, Nr. 25 (2006): 2439–44. http://dx.doi.org/10.1039/b600989a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Lobo, Raul F., Michael Tsapatsis, Clemens C. Freyhardt, Shervin Khodabandeh, Paul Wagner, Cong-Yan Chen, Kenneth J. Balkus, Stacey I. Zones und Mark E. Davis. „Characterization of the Extra-Large-Pore Zeolite UTD-1“. Journal of the American Chemical Society 119, Nr. 36 (September 1997): 8474–84. http://dx.doi.org/10.1021/ja9708528.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Davis, Mark E. „The Quest For Extra-Large Pore, Crystalline Molecular Sieves“. Chemistry - A European Journal 3, Nr. 11 (November 1997): 1745–50. http://dx.doi.org/10.1002/chem.19970031104.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Wang, Yichen, Hongjuan Wang, Yuanchao Shao, Tianduo Li, Takashi Tatsumi und Jin-Gui Wang. „Direct Synthesis of Ti-Containing CFI-Type Extra-Large-Pore Zeolites in the Presence of Fluorides“. Catalysts 9, Nr. 3 (14.03.2019): 257. http://dx.doi.org/10.3390/catal9030257.

Der volle Inhalt der Quelle
Annotation:
Ti-containing zeolites showed extremely high activity and selectivity in numerous friendly environmental oxidation reactions with hydrogen peroxide as a green oxidant. It will be in high demand to synthesize Ti-containing crystalline extra-large-pore zeolites due to the severe restrictions of medium-pore and/or large-pore zeolites for bulky reactant oxidations. However, the direct synthesis of extra-large-pore Ti-zeolites was still challengeable. Here, we firstly report a strategy to directly synthesize high-performance Ti-containing CFI-type extra-large-pore (Ti-CFI) zeolites assisted with fluorides. The well-crystallized Ti-CFI zeolites with framework titanium species could be synthesized in the hydrofluoric acid system with seed or in the ammonium fluoride system without seed, which showed higher catalytic activity for cyclohexene oxidation than that synthesized from the traditional LiOH system.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Matos, Jivaldo R., Lucildes P. Mercuri, Michal Kruk und Mietek Jaroniec. „Toward the Synthesis of Extra-Large-Pore MCM-41 Analogues“. Chemistry of Materials 13, Nr. 5 (Mai 2001): 1726–31. http://dx.doi.org/10.1021/cm000964p.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Martínez-Franco, Raquel, Cecilia Paris, Manuel Moliner und Avelino Corma. „Synthesis of highly stable metal-containing extra-large-pore molecular sieves“. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374, Nr. 2061 (28.02.2016): 20150075. http://dx.doi.org/10.1098/rsta.2015.0075.

Der volle Inhalt der Quelle
Annotation:
The isomorphic substitution of two different metals (Mg and Co) within the framework of the ITQ-51 zeotype (IFO structure) using bulky aromatic proton sponges as organic structure-directing agents (OSDAs) has allowed the synthesis of different stable metal-containing extra-large-pore zeotypes with high pore accessibility and acidity. These metal-containing extra-large-pore zeolites, named MgITQ-51 and CoITQ-51, have been characterized by different techniques, such as powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectrometry, UV–Vis spectroscopy, temperature programmed desorption of ammonia and Fourier transform infrared spectroscopy, to study their physico-chemical properties. The characterization confirms the preferential insertion of Mg and Co atoms within the crystalline structure of the ITQ-51 zeotype, providing high Brønsted acidity, and allowing their use as efficient heterogeneous acid catalysts in industrially relevant reactions involving bulky organic molecules.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Gao, Zihao Rei, Salvador R. G. Balestra, Jian Li und Miguel A. Camblor. „Synthesis of Extra‐Large Pore, Large Pore and Medium Pore Zeolites Using a Small Imidazolium Cation as the Organic Structure‐Directing Agent“. Chemistry – A European Journal 27, Nr. 72 (17.11.2021): 18109–17. http://dx.doi.org/10.1002/chem.202103288.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Li, Ting, Cheng Chen, Furong Guo, Jing Li, Hongmei Zeng und Zhien Lin. „Extra-large-pore metal sulfate-oxalates with diamondoid and zeolitic frameworks“. Inorganic Chemistry Communications 93 (Juli 2018): 33–36. http://dx.doi.org/10.1016/j.inoche.2018.05.003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Prasad, S., und Tran Chin Yang. „Iron-incorporation in extra-large pore molecular sieve in acid medium“. Catalysis Letters 28, Nr. 2-4 (1994): 269–75. http://dx.doi.org/10.1007/bf00806056.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Burton, Allen, Saleh Elomari, Cong-Yan Chen, Ronald C. Medrud, Ignatius Y. Chan, Lucy M. Bull, Charles Kibby, Thomas V. Harris, Stacey I. Zones und E. Steven Vittoratos. „SSZ-53 and SSZ-59: Two Novel Extra-Large Pore Zeolites“. Chemistry - A European Journal 9, Nr. 23 (05.12.2003): 5737–48. http://dx.doi.org/10.1002/chem.200305238.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

DAVIS, M. E. „ChemInform Abstract: The Quest for Extra-Large Pore, Crystalline Molecular Sieves“. ChemInform 29, Nr. 2 (24.06.2010): no. http://dx.doi.org/10.1002/chin.199802260.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Zwijnenburg, Martijn A., Stefan T. Bromley, Jacobus C. Jansen und Thomas Maschmeyer. „Toward Understanding Extra-Large-Pore Zeolite Energetics and Topology: A Polyhedral Approach“. Chemistry of Materials 16, Nr. 1 (Januar 2004): 12–20. http://dx.doi.org/10.1021/cm034132d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Bai, Risheng, Qiming Sun, Ning Wang, Yongcun Zou, Guanqi Guo, Sara Iborra, Avelino Corma und Jihong Yu. „Simple Quaternary Ammonium Cations-Templated Syntheses of Extra-Large Pore Germanosilicate Zeolites“. Chemistry of Materials 28, Nr. 18 (09.09.2016): 6455–58. http://dx.doi.org/10.1021/acs.chemmater.6b03179.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Přech, Jan, und Jiří Čejka. „UTL titanosilicate: An extra-large pore epoxidation catalyst with tunable textural properties“. Catalysis Today 277 (November 2016): 2–8. http://dx.doi.org/10.1016/j.cattod.2015.09.036.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Bjørgen, Morten, Anlaug Haukvik Grave, Saepurahman, Andrey Volynkin, Karina Mathisen, Karl Petter Lillerud, Unni Olsbye und Stian Svelle. „Spectroscopic and catalytic characterization of extra large pore zeotype H-ITQ-33“. Microporous and Mesoporous Materials 151 (März 2012): 424–33. http://dx.doi.org/10.1016/j.micromeso.2011.09.029.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Jiang, Jiuxing, Yan Xu, Peng Cheng, Qiming Sun, Jihong Yu, Avelino Corma und Ruren Xu. „Investigation of Extra-Large Pore Zeolite Synthesis by a High-Throughput Approach“. Chemistry of Materials 23, Nr. 21 (08.11.2011): 4709–15. http://dx.doi.org/10.1021/cm201221z.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Tontisirin, Supak, und Stefan Ernst. „Zeolite SSZ-53: An Extra-Large-Pore Zeolite with Interesting Catalytic Properties“. Angewandte Chemie International Edition 46, Nr. 38 (24.09.2007): 7304–6. http://dx.doi.org/10.1002/anie.200701634.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Matos, Jivaldo R., Lucildes P. Mercuri, Michal Kruk und Mietek Jaroniec. „ChemInform Abstract: Toward the Synthesis of Extra-Large-Pore MCM-41 Analogues.“ ChemInform 32, Nr. 35 (28.08.2001): no. http://dx.doi.org/10.1002/chin.200135256.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Jiang, Jiuxing, Jihong Yu und Avelino Corma. „Extra-Large-Pore Zeolites: Bridging the Gap between Micro and Mesoporous Structures“. Angewandte Chemie International Edition 49, Nr. 18 (19.04.2010): 3120–45. http://dx.doi.org/10.1002/anie.200904016.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Smeets, Stef, Dan Xie, Christian Baerlocher, Lynne B. McCusker, Wei Wan, Xiaodong Zou und Stacey I. Zones. „High-Silica Zeolite SSZ-61 with Dumbbell-Shaped Extra-Large-Pore Channels“. Angewandte Chemie International Edition 53, Nr. 39 (01.08.2014): 10398–402. http://dx.doi.org/10.1002/anie.201405658.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Smeets, Stef, Dan Xie, Christian Baerlocher, Lynne B. McCusker, Wei Wan, Xiaodong Zou und Stacey I. Zones. „High-Silica Zeolite SSZ-61 with Dumbbell-Shaped Extra-Large-Pore Channels“. Angewandte Chemie 126, Nr. 39 (01.08.2014): 10566–70. http://dx.doi.org/10.1002/ange.201405658.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Yang, Jingjing, Yue-Biao Zhang, Qi Liu, Christopher A. Trickett, Enrique Gutiérrez-Puebla, M. Ángeles Monge, Hengjiang Cong, Abdulrahman Aldossary, Hexiang Deng und Omar M. Yaghi. „Principles of Designing Extra-Large Pore Openings and Cages in Zeolitic Imidazolate Frameworks“. Journal of the American Chemical Society 139, Nr. 18 (27.04.2017): 6448–55. http://dx.doi.org/10.1021/jacs.7b02272.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Ronchi, Laura, Andrey Ryzhikov, Habiba Nouali, T. Jean Daou, Sébastien Albrecht und Joël Patarin. „Extra large pore opening CFI and DON-type zeosils for mechanical energy storage“. Microporous and Mesoporous Materials 255 (Januar 2018): 211–19. http://dx.doi.org/10.1016/j.micromeso.2017.07.039.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Liu, Leifeng, Zheng-Bao Yu, Hong Chen, Youqian Deng, Bao-Lin Lee und Junliang Sun. „Disorder in Extra-Large Pore Zeolite ITQ-33 Revealed by Single Crystal XRD“. Crystal Growth & Design 13, Nr. 10 (26.08.2013): 4168–71. http://dx.doi.org/10.1021/cg400880a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Han, Zeyu, Qingpeng Wang, Guixian Li, Dong Ji und Xinhong Zhao. „Simplified ionothermal synthesis of extra-large-pore aluminophosphate molecular sieve with -CLO topology“. Solid State Sciences 100 (Februar 2020): 106118. http://dx.doi.org/10.1016/j.solidstatesciences.2020.106118.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Přech, Jan, Martin Kubů und Jiří Čejka. „Synthesis and catalytic properties of titanium containing extra-large pore zeolite CIT-5“. Catalysis Today 227 (Mai 2014): 80–86. http://dx.doi.org/10.1016/j.cattod.2014.01.003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Zi, Wenwen, Xianshu Cai, Feng Jiao und Hongbin Du. „Synthesis, Structure and Properties of an Extra‐Large‐Pore Aluminosilicate Zeolite NUD‐6“. Chemistry – A European Journal 26, Nr. 71 (19.11.2020): 17143–48. http://dx.doi.org/10.1002/chem.202003183.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Qian, Kun, Yilin Wang, Zhiqiang Liang und Jiyang Li. „Germanosilicate zeolite ITQ-44 with extra-large 18-rings synthesized using a commercial quaternary ammonium as a structure-directing agent“. RSC Advances 5, Nr. 78 (2015): 63209–14. http://dx.doi.org/10.1039/c5ra09942k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Shamzhy, Mariya, Maksym Opanasenko, Patricia Concepción und Agustín Martínez. „New trends in tailoring active sites in zeolite-based catalysts“. Chemical Society Reviews 48, Nr. 4 (2019): 1095–149. http://dx.doi.org/10.1039/c8cs00887f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Paillaud, J. L. „Extra-Large-Pore Zeolites with Two-Dimensional Channels Formed by 14 and 12 Rings“. Science 304, Nr. 5673 (14.05.2004): 990–92. http://dx.doi.org/10.1126/science.1098242.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Gao, Zi-Hao, Fei-Jian Chen, Lei Xu, Lin Sun, Yan Xu und Hong-Bin Du. „A Stable Extra-Large-Pore Zeolite with Intersecting 14- and 10-Membered-Ring Channels“. Chemistry - A European Journal 22, Nr. 40 (17.08.2016): 14367–72. http://dx.doi.org/10.1002/chem.201602419.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Chen, Fei-Jian, Yan Xu und Hong-Bin Du. „An Extra-Large-Pore Zeolite with Intersecting 18-, 12-, and 10-Membered Ring Channels“. Angewandte Chemie International Edition 53, Nr. 36 (11.07.2014): 9592–96. http://dx.doi.org/10.1002/anie.201404608.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Yang, Boting, Jin-Gang Jiang, Hao Xu, Haihong Wu, Mingyuan He und Peng Wu. „Synthesis of Extra-Large-Pore Zeolite ECNU-9 with Intersecting 14*12-Ring Channels“. Angewandte Chemie 130, Nr. 30 (28.06.2018): 9659–63. http://dx.doi.org/10.1002/ange.201805535.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Jiang, Jiuxing, Jihong Yu und Avelino Corma. „ChemInform Abstract: Extra-Large-Pore Zeolites: Bridging the Gap Between Micro and Mesoporous Structures“. ChemInform 41, Nr. 31 (09.07.2010): no. http://dx.doi.org/10.1002/chin.201031239.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Chen, Fei-Jian, Yan Xu und Hong-Bin Du. „An Extra-Large-Pore Zeolite with Intersecting 18-, 12-, and 10-Membered Ring Channels“. Angewandte Chemie 126, Nr. 36 (11.07.2014): 9746–50. http://dx.doi.org/10.1002/ange.201404608.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Yang, Boting, Jin-Gang Jiang, Hao Xu, Haihong Wu, Mingyuan He und Peng Wu. „Synthesis of Extra-Large-Pore Zeolite ECNU-9 with Intersecting 14*12-Ring Channels“. Angewandte Chemie International Edition 57, Nr. 30 (28.06.2018): 9515–19. http://dx.doi.org/10.1002/anie.201805535.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Gao, Zhongquan, Yunzhang Rao, Liang Shi, Run Xiang und Zhihua Yang. „Effect of Magnesium Sulfate Solution on Pore Structure of Ionic Rare Earth Ore during Leaching Process“. Minerals 13, Nr. 2 (20.02.2023): 294. http://dx.doi.org/10.3390/min13020294.

Der volle Inhalt der Quelle
Annotation:
During in situ leaching of ionic rare earth ore, the pore structure of the orebody changes due to the chemical replacement reaction between the leaching agent and the rare earth ore. To explore the influence of leaching agents on the pore structure of ionic rare earth ore during the leaching process, magnesium sulfate solutions with different concentrations and pH are used as leaching agents in this paper. An experimental method of indoor simulated column leaching, a Zetaprobe potential analyzer, and an NM-60 rock microstructure analyzer to measure parameters, including surface zeta potential, T2 map, and the pore structure of rare-earth ore particles, were used to analyze the influence law of magnesium sulfate solution on the pore structure of ionic rare earth ore. The result proves that pure H2O leaching has little effect on the surface Zeta potential and the internal pore structure of the ore particles. In the leaching process of magnesium sulfate solutions with different concentrations, the absolute value of Zeta potential decreases, and the internal pore structure evolves from medium, large, and extra-large to small pores. In the leaching process of magnesium sulfate solutions with different pH, the absolute value of Zeta potential decreases and then increases slightly with the end of the ion exchange reaction. The internal pore structure generally shows a decrease in the number of small and extra-large pores and an increase in the number of medium and large pores. According to the analysis, the concentration and pH of the leaching agent cause the change of thickness of the electric double layer of the fine particles in the orebody, break the balance of interaction force between soil particles, and result in the evolution of a micropore structure of orebody during leaching.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Veselý, Ondřej, Pavla Eliášová, Russell E. Morris und Jiří Čejka. „Reverse ADOR: reconstruction of UTL zeolite from layered IPC-1P“. Materials Advances 2, Nr. 12 (2021): 3862–70. http://dx.doi.org/10.1039/d1ma00212k.

Der volle Inhalt der Quelle
Annotation:
The germanosilicate zeolite UTL was reconstructed from the layered precursor IPC-1P using the modified Assembly–Disassembly–Organisation–Reassembly (ADOR) process. The reverse ADOR is a promising new route for synthesis of extra-large-pore zeolites.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Pal, Nabanita, Manidipa Paul und Asim Bhaumik. „New Extra Large Pore Chromium Oxophenylphosphate: An Efficient Catalyst in Liquid Phase Partial Oxidation Reactions“. Open Catalysis Journal 2, Nr. 1 (15.12.2009): 156–62. http://dx.doi.org/10.2174/1876214x00902010156.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Jiang, Jiuxing, Yifeng Yun, Xiaodong Zou, Jose Luis Jorda und Avelino Corma. „ITQ-54: a multi-dimensional extra-large pore zeolite with 20 × 14 × 12-ring channels“. Chemical Science 6, Nr. 1 (2015): 480–85. http://dx.doi.org/10.1039/c4sc02577f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Kang, Jong Hun, Dan Xie, Stacey I. Zones, Stef Smeets, Lynne B. McCusker und Mark E. Davis. „Synthesis and Characterization of CIT-13, a Germanosilicate Molecular Sieve with Extra-Large Pore Openings“. Chemistry of Materials 28, Nr. 17 (30.08.2016): 6250–59. http://dx.doi.org/10.1021/acs.chemmater.6b02468.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Martínez-Franco, Raquel, Junliang Sun, German Sastre, Yifeng Yun, Xiaodong Zou, Manuel Moliner und Avelino Corma. „Supra-molecular assembly of aromatic proton sponges to direct the crystallization of extra-large-pore zeotypes“. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470, Nr. 2166 (08.06.2014): 20140107. http://dx.doi.org/10.1098/rspa.2014.0107.

Der volle Inhalt der Quelle
Annotation:
The combination of different experimental techniques, such as solid 13 C and 1 H magic-angle spinning NMR spectroscopy, fluorescence spectroscopy and powder X-ray diffraction, together with theoretical calculations allows the determination of the unique structure directing the role of the bulky aromatic proton sponge 1,8- bis (dimethylamino)naphthalene (DMAN) towards the extra-large-pore ITQ-51 zeolite through supra-molecular assemblies of those organic molecules.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Du, Jinhao, Ruting Yuan, Feng Lin, Lijun Liao, Ge Yang, Furong Tao, Yuezhi Cui und Christine E. A. Kirschhock. „Impact of residual sodium cations in azonia-spiro templates on the formation of large and extra-large pore zeolites“. Microporous and Mesoporous Materials 336 (Mai 2022): 111891. http://dx.doi.org/10.1016/j.micromeso.2022.111891.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Cano, María L., Frances L. Cozens, Hermenegildo García, Vicente Martí und J. C. Scaiano. „Intrazeolite Photochemistry. 13. Photophysical Properties of Bulky 2,4,6-Triphenylpyrylium and Tritylium Cations within Large- and Extra-Large-Pore Zeolites“. Journal of Physical Chemistry 100, Nr. 46 (Januar 1996): 18152–57. http://dx.doi.org/10.1021/jp960730m.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Zhang, Lei, Zhi Ping Li und Guo Ming Liu. „Permeability Curves Characteristic Analysis of L Oilfield“. Advanced Materials Research 616-618 (Dezember 2012): 898–901. http://dx.doi.org/10.4028/www.scientific.net/amr.616-618.898.

Der volle Inhalt der Quelle
Annotation:
The L oilfield Cretaceous (M-I-1), Jurassic Department (Ю-0-3) clastic pore types, including primary porosity, secondary porosity and cracks in three categories, their characteristics and the degree of development. Chalk Department of particles holes and grain dissolution porosity, an average of 53.2%, followed by argillaceous porous and contraction joints, while a small number of particles dissolved pore, showing a small amount of paste particles seam and tensile crack; Jurassic inter-granular holes and intra-granular dissolution porosity is developed, accounting for the porosity as high as 95%, while a small amount of argillaceous porous and granulizing hole and a very small amount of mold holes. L Oilfield Cretaceous and Jurassic reservoirs inter-granular pores, inter-granular dissolution pore, pore throat combination M-I-1, mainly to large - in the hole, micro-throat, Ю-0-3 large - in the hole Extra Coarse - rough throat-based thin throat, Ю-0-1, Jurassic sandstone pore structure better than the Cretaceous.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Xue, Yun-Shan, Dayou Shi, Haitao Zhang, Weiwei Ju, Hua Mei und Yan Xu. „A series of color-tunable light-emitting open-framework lanthanide sulfates containing extra-large 36-membered ring channels“. CrystEngComm 19, Nr. 40 (2017): 5989–94. http://dx.doi.org/10.1039/c7ce01319a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Zi, Wen‐Wen, Zihao Gao, Jun Zhang, Bao‐Xun Zhao, Xian‐Shu Cai, Hong‐Bin Du und Fei‐Jian Chen. „An Extra‐Large‐Pore Pure Silica Zeolite with 16×8×8‐Membered Ring Pore Channels Synthesized using an Aromatic Organic Directing Agent“. Angewandte Chemie 132, Nr. 10 (28.01.2020): 3976–79. http://dx.doi.org/10.1002/ange.201915232.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie