Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Polypyridyl.

Zeitschriftenartikel zum Thema „Polypyridyl“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Polypyridyl" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Mazuryk, Olga, Przemysław Gajda-Morszewski und Małgorzata Brindell. „Versatile Impact of Serum Proteins on Ruthenium(II) Polypyridyl Complexes Properties - Opportunities and Obstacles“. Current Protein & Peptide Science 20, Nr. 11 (24.10.2019): 1052–59. http://dx.doi.org/10.2174/1389203720666190513090851.

Der volle Inhalt der Quelle
Annotation:
Ruthenium(II) polypyridyl complexes have been extensively studied for the past few decades as promising anticancer agents. Despite the expected intravenous route of administration, the interaction between Ru(II) polypyridyl compounds and serum proteins is not well characterized and vast majority of the available literature data concerns determination of the binding constant. Ru-protein adducts can modify the biological effects of the Ru complexes influencing their cytotoxic and antimicrobial activity as well as introduce significant changes in their photophysical properties. More extensive research on the interaction between serum proteins and Ru(II) polypyridyl complexes is important for further development of Ru(II) polypyridyl compounds towards their application in anticancer therapy and diagnostics and can open new opportunities for already developed complexes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

O’Neill, Luke, Laura Perdisatt und Christine O’Connor. „Structure-Property Relationships for a Series of Ruthenium(II) Polypyridyl Complexes Elucidated through Raman Spectroscopy“. Journal of Spectroscopy 2018 (01.11.2018): 1–11. http://dx.doi.org/10.1155/2018/3827130.

Der volle Inhalt der Quelle
Annotation:
A series of ruthenium polypyridyl complexes were studied using Raman spectroscopy supported by UV/Vis absorption, luminescence spectroscopy, and luminescence lifetime determination by time-correlated single photon counting (TCSPC). The complexes were characterised to determine the influence of the variation of the conjugation across the main polypyridyl ligand. The systematic and sequential variation of the main polypyridyl ligand, 2-(4-formylphenyl)imidazo[4,5-f][1,10]phenanthroline (FPIP), 2-(4-cyanophenyl)imidazo[4,5-f][1,10]phenanthroline (CPIP), 2-(4-bromophenyl)imidazo[4,5-f][1,10]phenanthroline (BPIP), and 2-(4-nitrophenyl)imidazo[4,5-f][1,10]phenanthroline (NPIP) ligands, allowed the monitoring of very small changes in the ligands electronic nature. Complexes containing a systematic variation of the position (para, meta, and ortho) of the nitrile terminal group on the ligand (the para being 2-(4-cyanophenyl)imidazo[4,5-f][1,10]phenanthroline (p-CPIP), the meta 2-(3-cyanophenyl)imidazo[4,5-f][1,10]phenanthroline (m-CPIP) and 2-(2-cyanophenyl)imidazo[4,5-f][1,10]phenanthroline (o-CPIP)) were also characterised. Absorption, emission characteristics, and luminescence yields were calculated and correlated with structural variation. It was found that both the electronic changes in the aforementioned ligands showed very small spectral changes with an accompanying complex relationship when examined with traditional electronic methods. Stokes shift and Raman spectroscopy were then employed as a means to directly gauge the effect of polypyridyl ligand change on the conjugation and vibrational characteristics of the complexes. Vibrational coherence as measured as a function of the shifted frequency of the imizodale bridge was shown to accurately describe the electronic coherence and hence vibrational cooperation from the ruthenium centre to the main polypyridyl ligand. The well-defined trends established and elucidated though Raman spectroscopy show that the variation of the polypyridyl ligand can be monitored and tailored. This allows for a greater understanding of the electronic and excited state characteristics of the ruthenium systems when traditional electronic spectroscopy lacks the sensitivity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Lu, Xiaoqing, Shuxian Wei, Chi-Man Lawrence Wu, Ning Ding, Shaoren Li, Lianming Zhao und Wenyue Guo. „Theoretical Insight into the Spectral Characteristics of Fe(II)-Based Complexes for Dye-Sensitized Solar Cells—Part I: Polypyridyl Ancillary Ligands“. International Journal of Photoenergy 2011 (2011): 1–11. http://dx.doi.org/10.1155/2011/316952.

Der volle Inhalt der Quelle
Annotation:
The design of light-absorbent dyes with cheaper, safer, and more sustainable materials is one of the key issues for the future development of dye-sensitized solar cells (DSSCs). We report herein a theoretical investigation on a series of polypyridyl Fe(II)-based complexes of FeL2(SCN)2, [FeL3]2+, [FeL′(SCN)3]-, [FeL′2]2+, and FeL′′(SCN)2(L = 2,2′-bipyridyl-4,4′-dicarboxylic acid, L′ = 2,2′,2″-terpyridyl-4,4′,4″-tricarboxylic acid, L″= 4,4‴-dimethyl-2,2′ : 6′,2″ :6″,2‴-quaterpyridyl-4′,4″-biscarboxylic acid) by density functional theory (DFT) and time-dependent DFT (TD-DFT). Molecular geometries, electronic structures, and optical absorption spectra are predicted in both the gas phase and methyl cyanide (MeCN) solution. Our results show that polypyridyl Fe(II)-based complexes display multitransition characters of Fe → polypyridine metal-to-ligand charge transfer and ligand-to-ligand charge transfer in the range of 350–800 nm. Structural optimizations by choosing different polypyridyl ancillary ligands lead to alterations of the molecular orbital energies, oscillator strength, and spectral response range. Compared with Ru(II) sensitizers, Fe(II)-based complexes show similar characteristics and improving trend of optical absorption spectra along with the introduction of different polypyridyl ancillary ligands.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Nandhini, T., K. R. Anju, V. M. Manikandamathavan, V. G. Vaidyanathan und B. U. Nair. „Interactions of Ru(ii) polypyridyl complexes with DNA mismatches and abasic sites“. Dalton Transactions 44, Nr. 19 (2015): 9044–51. http://dx.doi.org/10.1039/c5dt00807g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Amiri, Mona, Octavio Martinez Perez, Riley T. Endean, Loorthuraja Rasu, Prabin Nepal, Shuai Xu und Steven H. Bergens. „Solid-phase synthesis and photoactivity of Ru-polypyridyl visible light chromophores bonded through carbon to semiconductor surfaces“. Dalton Transactions 49, Nr. 29 (2020): 10173–84. http://dx.doi.org/10.1039/d0dt01776k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Race, N. A., W. Zhang, M. E. Screen, B. A. Barden und W. R. McNamara. „Iron polypyridyl catalysts assembled on metal oxide semiconductors for photocatalytic hydrogen generation“. Chemical Communications 54, Nr. 26 (2018): 3290–93. http://dx.doi.org/10.1039/c8cc00453f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Pierroz, Vanessa, Riccardo Rubbiani, Christian Gentili, Malay Patra, Cristina Mari, Gilles Gasser und Stefano Ferrari. „Dual mode of cell death upon the photo-irradiation of a RuIIpolypyridyl complex in interphase or mitosis“. Chemical Science 7, Nr. 9 (2016): 6115–24. http://dx.doi.org/10.1039/c6sc00387g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Liu, Ze-Yu, Jin Zhang, Yan-Mei Sun, Chun-Fang Zhu, Yan-Na Lu, Jian-Zhong Wu, Jing Li, Hai-Yang Liu und Yong Ye. „Photodynamic antitumor activity of Ru(ii) complexes of imidazo-phenanthroline conjugated hydroxybenzoic acid as tumor targeting photosensitizers“. Journal of Materials Chemistry B 8, Nr. 3 (2020): 438–46. http://dx.doi.org/10.1039/c9tb02103e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Martin, Aaron, Aisling Byrne, Ciarán Dolan, Robert J. Forster und Tia E. Keyes. „Solvent switchable dual emission from a bichromophoric ruthenium–BODIPY complex“. Chemical Communications 51, Nr. 87 (2015): 15839–41. http://dx.doi.org/10.1039/c5cc07135f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Leem, Gyu, Shahar Keinan, Junlin Jiang, Zhuo Chen, Toan Pho, Zachary A. Morseth, Zhenya Hu et al. „Ru(bpy)32+ derivatized polystyrenes constructed by nitroxide-mediated radical polymerization. Relationship between polymer chain length, structure and photophysical properties“. Polymer Chemistry 6, Nr. 47 (2015): 8184–93. http://dx.doi.org/10.1039/c5py01289a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Yamaguchi, Eiji, Nao Taguchi und Akichika Itoh. „Ruthenium polypyridyl complex-catalysed aryl alkoxylation of styrenes: improving reactivity using a continuous flow photo-microreactor“. Reaction Chemistry & Engineering 4, Nr. 6 (2019): 995–99. http://dx.doi.org/10.1039/c9re00061e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Margonis, Caroline M., Marissa Ho, Benjamin D. Travis, William W. Brennessel und William R. McNamara. „Iron polypyridyl complex adsorbed on carbon surfaces for hydrogen generation“. Chemical Communications 57, Nr. 62 (2021): 7697–700. http://dx.doi.org/10.1039/d1cc02131a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Notaro, Anna, und Gilles Gasser. „Monomeric and dimeric coordinatively saturated and substitutionally inert Ru(ii) polypyridyl complexes as anticancer drug candidates“. Chemical Society Reviews 46, Nr. 23 (2017): 7317–37. http://dx.doi.org/10.1039/c7cs00356k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Li, Shuang, Gang Xu, Yuhua Zhu, Jian Zhao und Shaohua Gou. „Bifunctional ruthenium(ii) polypyridyl complexes of curcumin as potential anticancer agents“. Dalton Transactions 49, Nr. 27 (2020): 9454–63. http://dx.doi.org/10.1039/d0dt01040e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Martínez-Alonso, Marta, und Gilles Gasser. „Ruthenium polypyridyl complex-containing bioconjugates“. Coordination Chemistry Reviews 434 (Mai 2021): 213736. http://dx.doi.org/10.1016/j.ccr.2020.213736.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Banerjee, Tanmay, Abul Kalam Biswas, Tuhin Subhra Sahu, Bishwajit Ganguly, Amitava Das und Hirendra Nath Ghosh. „New Ru(ii)/Os(ii)-polypyridyl complexes for coupling to TiO2 surfaces through acetylacetone functionality and studies on interfacial electron-transfer dynamics“. Dalton Trans. 43, Nr. 36 (2014): 13601–11. http://dx.doi.org/10.1039/c4dt01571a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Taheri, Atefeh, und Gerald J. Meyer. „Temperature dependent iodide oxidation by MLCT excited states“. Dalton Trans. 43, Nr. 47 (2014): 17856–63. http://dx.doi.org/10.1039/c4dt01683a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Poynton, Fergus E., Sandra A. Bright, Salvador Blasco, D. Clive Williams, John M. Kelly und Thorfinnur Gunnlaugsson. „The development of ruthenium(ii) polypyridyl complexes and conjugates forin vitrocellular andin vivoapplications“. Chemical Society Reviews 46, Nr. 24 (2017): 7706–56. http://dx.doi.org/10.1039/c7cs00680b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Liao, Xiangwen, Guijuan Jiang, Jintao Wang, Xuemin Duan, Zhouyuji Liao, Xiaoli Lin, Jihong Shen, Yanshi Xiong und Guangbin Jiang. „Two ruthenium polypyridyl complexes functionalized with thiophen: synthesis and antibacterial activity against Staphylococcus aureus“. New Journal of Chemistry 44, Nr. 40 (2020): 17215–21. http://dx.doi.org/10.1039/d0nj02944k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Sun, Qinchao, Bogdan Dereka, Eric Vauthey, Latévi M. Lawson Daku und Andreas Hauser. „Ultrafast transient IR spectroscopy and DFT calculations of ruthenium(ii) polypyridyl complexes“. Chemical Science 8, Nr. 1 (2017): 223–30. http://dx.doi.org/10.1039/c6sc01220e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Cardin, Christine J., John M. Kelly und Susan J. Quinn. „Photochemically active DNA-intercalating ruthenium and related complexes – insights by combining crystallography and transient spectroscopy“. Chemical Science 8, Nr. 7 (2017): 4705–23. http://dx.doi.org/10.1039/c7sc01070b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Queyriaux, N., E. Giannoudis, C. D. Windle, S. Roy, J. Pécaut, A. G. Coutsolelos, V. Artero und M. Chavarot-Kerlidou. „A noble metal-free photocatalytic system based on a novel cobalt tetrapyridyl catalyst for hydrogen production in fully aqueous medium“. Sustainable Energy & Fuels 2, Nr. 3 (2018): 553–57. http://dx.doi.org/10.1039/c7se00428a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Conti, Luca, Silvia Ciambellotti, Gina Elena Giacomazzo, Veronica Ghini, Lucrezia Cosottini, Elisa Puliti, Mirko Severi et al. „Ferritin nanocomposites for the selective delivery of photosensitizing ruthenium-polypyridyl compounds to cancer cells“. Inorganic Chemistry Frontiers 9, Nr. 6 (2022): 1070–81. http://dx.doi.org/10.1039/d1qi01268a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Azar, Daniel F., Hassib Audi, Stephanie Farhat, Mirvat El-Sibai, Ralph J. Abi-Habib und Rony S. Khnayzer. „Phototoxicity of strained Ru(ii) complexes: is it the metal complex or the dissociating ligand?“ Dalton Transactions 46, Nr. 35 (2017): 11529–32. http://dx.doi.org/10.1039/c7dt02255g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Tripathy, Suman Kumar, Umasankar De, Niranjan Dehury, Satyanarayan Pal, Hyung Sik Kim und Srikanta Patra. „Dinuclear [{(p-cym)RuCl}2(μ-phpy)](PF6)2 and heterodinuclear [(ppy)2Ir(μ-phpy)Ru(p-cym)Cl](PF6)2 complexes: synthesis, structure and anticancer activity“. Dalton Trans. 43, Nr. 39 (2014): 14546–49. http://dx.doi.org/10.1039/c4dt01033g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Ryan, Gary J., Fergus E. Poynton, Robert B. P. Elmes, Marialuisa Erby, D. Clive Williams, Susan J. Quinn und Thorfinnur Gunnlaugsson. „Unexpected DNA binding properties with correlated downstream biological applications in mono vs. bis-1,8-naphthalimide Ru(ii)-polypyridyl conjugates“. Dalton Transactions 44, Nr. 37 (2015): 16332–44. http://dx.doi.org/10.1039/c5dt00360a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Jella, Tejaswi, Malladi Srikanth, Rambabu Bolligarla, Yarasi Soujanya, Surya Prakash Singh und Lingamallu Giribabu. „Benzimidazole-functionalized ancillary ligands for heteroleptic Ru(ii) complexes: synthesis, characterization and dye-sensitized solar cell applications“. Dalton Transactions 44, Nr. 33 (2015): 14697–706. http://dx.doi.org/10.1039/c5dt02074c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Luo, Zuandi, Lianling Yu, Fang Yang, Zhennan Zhao, Bo Yu, Haoqiang Lai, Ka-Hing Wong, Sai-Ming Ngai, Wenjie Zheng und Tianfeng Chen. „Ruthenium polypyridyl complexes as inducer of ROS-mediated apoptosis in cancer cells by targeting thioredoxin reductase“. Metallomics 6, Nr. 8 (2014): 1480–90. http://dx.doi.org/10.1039/c4mt00044g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Zhao, Xueze, Mingle Li, Wen Sun, Jiangli Fan, Jianjun Du und Xiaojun Peng. „An estrogen receptor targeted ruthenium complex as a two-photon photodynamic therapy agent for breast cancer cells“. Chemical Communications 54, Nr. 51 (2018): 7038–41. http://dx.doi.org/10.1039/c8cc03786h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Jakubaszek, Marta, Bruno Goud, Stefano Ferrari und Gilles Gasser. „Mechanisms of action of Ru(ii) polypyridyl complexes in living cells upon light irradiation“. Chemical Communications 54, Nr. 93 (2018): 13040–59. http://dx.doi.org/10.1039/c8cc05928d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Tripathy, Suman Kumar, Umasankar De, Niranjan Dehury, Paltan Laha, Manas Kumar Panda, Hyung Sik Kim und Srikanta Patra. „Cyclometallated iridium complexes inducing paraptotic cell death like natural products: synthesis, structure and mechanistic aspects“. Dalton Transactions 45, Nr. 38 (2016): 15122–36. http://dx.doi.org/10.1039/c6dt00929h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Gill, Martin R., Michael G. Walker, Sarah Able, Ole Tietz, Abirami Lakshminarayanan, Rachel Anderson, Rod Chalk et al. „An 111In-labelled bis-ruthenium(ii) dipyridophenazine theranostic complex: mismatch DNA binding and selective radiotoxicity towards MMR-deficient cancer cells“. Chemical Science 11, Nr. 33 (2020): 8936–44. http://dx.doi.org/10.1039/d0sc02825h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Weder, Nicola, Benjamin Probst, Laurent Sévery, Ricardo J. Fernández-Terán, Jan Beckord, Olivier Blacque, S. David Tilley, Peter Hamm, Jürg Osterwalder und Roger Alberto. „Mechanistic insights into photocatalysis and over two days of stable H2 generation in electrocatalysis by a molecular cobalt catalyst immobilized on TiO2“. Catalysis Science & Technology 10, Nr. 8 (2020): 2549–60. http://dx.doi.org/10.1039/d0cy00330a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Qiu, Yuqing, Yuquan Feng, Qian Zhao, Hongwei Wang, Yingchen Guo und Dongfang Qiu. „White light emission from a green cyclometalated platinum(ii) terpyridylphenylacetylide upon titration with Zn(ii) and Eu(iii )“. Dalton Transactions 49, Nr. 32 (2020): 11163–69. http://dx.doi.org/10.1039/d0dt02336a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Singh, Vikram, Prakash Chandra Mondal, Megha Chhatwal, Yekkoni Lakshmanan Jeyachandran und Michael Zharnikov. „Catalytic oxidation of ascorbic acid via copper–polypyridyl complex immobilized on glass“. RSC Adv. 4, Nr. 44 (2014): 23168–76. http://dx.doi.org/10.1039/c4ra00817k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Yang, Jing, Qian Cao, Wei-Liang Hu, Rui-Rong Ye, Liang He, Liang-Nian Ji, Peter Z. Qin und Zong-Wan Mao. „Theranostic TEMPO-functionalized Ru(ii) complexes as photosensitizers and oxidative stress indicators“. Dalton Transactions 46, Nr. 2 (2017): 445–54. http://dx.doi.org/10.1039/c6dt04028d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Xiong, Zushuang, Jing-Xiang Zhong, Zhennan Zhao und Tianfeng Chen. „Biocompatible ruthenium polypyridyl complexes as efficient radiosensitizers“. Dalton Transactions 48, Nr. 13 (2019): 4114–18. http://dx.doi.org/10.1039/c9dt00333a.

Der volle Inhalt der Quelle
Annotation:
A biocompatible ruthenium polypyridyl complex has been rationally designed, which could self-assemble into nanoparticles in aqueous solution to enhance the solubility and biocompatibility, and could synergistically realize simultaneous cancer chemo-radiotherapy.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Banerjee, Samya, Ila Pant, Imran Khan, Puja Prasad, Akhtar Hussain, Paturu Kondaiah und Akhil R. Chakravarty. „Remarkable enhancement in photocytotoxicity and hydrolytic stability of curcumin on binding to an oxovanadium(iv) moiety“. Dalton Transactions 44, Nr. 9 (2015): 4108–22. http://dx.doi.org/10.1039/c4dt02165g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

De Vos, Arthur, Kurt Lejaeghere, Francesco Muniz Miranda, Christian V. Stevens, Pascal Van Der Voort und Veronique Van Speybroeck. „Electronic properties of heterogenized Ru(ii) polypyridyl photoredox complexes on covalent triazine frameworks“. Journal of Materials Chemistry A 7, Nr. 14 (2019): 8433–42. http://dx.doi.org/10.1039/c9ta00573k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Elgrishi, Noémie, Matthew B. Chambers, Xia Wang und Marc Fontecave. „Molecular polypyridine-based metal complexes as catalysts for the reduction of CO2“. Chemical Society Reviews 46, Nr. 3 (2017): 761–96. http://dx.doi.org/10.1039/c5cs00391a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Vilvamani, Narayanasamy, Tarkeshwar Gupta, Rinkoo Devi Gupta und Satish Kumar Awasthi. „Bottom-up molecular-assembly of Ru(ii)polypyridyl complex-based hybrid nanostructures decorated with silver nanoparticles: effect of Ag nitrate concentration“. RSC Adv. 4, Nr. 38 (2014): 20024–30. http://dx.doi.org/10.1039/c4ra01347f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Chen, Tianfeng, Wen-Jie Mei, Yum-Shing Wong, Jie Liu, Yanan Liu, Huang-Song Xie und Wen-Jie Zheng. „Correction: Chiral ruthenium polypyridyl complexes as mitochondria-targeted apoptosis inducers“. MedChemComm 9, Nr. 4 (2018): 745. http://dx.doi.org/10.1039/c8md90010h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Zayat, Leonardo, Oscar Filevich, Luis M. Baraldo und Roberto Etchenique. „Ruthenium polypyridyl phototriggers: from beginnings to perspectives“. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371, Nr. 1995 (28.07.2013): 20120330. http://dx.doi.org/10.1098/rsta.2012.0330.

Der volle Inhalt der Quelle
Annotation:
Octahedral Ru(II) polypyridyl complexes constitute a superb platform to devise photoactive triggers capable of delivering entire molecules in a reliable, fast, efficient and clean way. Ruthenium coordination chemistry opens the way to caging a wide range of molecules, such as amino acids, nucleotides, neurotransmitters, fluorescent probes and genetic inducers. Contrary to other phototriggers, these Ru-based caged compounds are active with visible light, and can be photolysed even at 532 nm (green), enabling the use of simple and inexpensive equipment. These compounds are also active in the two-photon regime, a property that extends their scope to systems where IR light must be used to achieve high precision and penetrability. The state of the art and the future of ruthenium polypyridyl phototriggers are discussed, and several new applications are presented.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Shi, Hongdong, Tiantian Fang, Yao Tian, Hai Huang und Yangzhong Liu. „A dual-fluorescent nano-carrier for delivering photoactive ruthenium polypyridyl complexes“. Journal of Materials Chemistry B 4, Nr. 27 (2016): 4746–53. http://dx.doi.org/10.1039/c6tb01070a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Eskandari, Arvin, Arunangshu Kundu, Chunxin Lu, Sushobhan Ghosh und Kogularamanan Suntharalingam. „Synthesis, characterization, and cytotoxic properties of mono- and di-nuclear cobalt(ii)-polypyridyl complexes“. Dalton Transactions 47, Nr. 16 (2018): 5755–63. http://dx.doi.org/10.1039/c8dt00577j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Akatsuka, Komi, Ryosuke Abe, Tsugiko Takase und Dai Oyama. „Coordination Chemistry of Ru(II) Complexes of an Asymmetric Bipyridine Analogue: Synergistic Effects of Supporting Ligand and Coordination Geometry on Reactivities“. Molecules 25, Nr. 1 (19.12.2019): 27. http://dx.doi.org/10.3390/molecules25010027.

Der volle Inhalt der Quelle
Annotation:
The reactivities of transition metal coordination compounds are often controlled by the environment around the coordination sphere. For ruthenium(II) complexes, differences in polypyridyl supporting ligands affect some types of reactivity despite identical coordination geometries. To evaluate the synergistic effects of (i) the supporting ligands, and (ii) the coordination geometry, a series of dicarbonyl–ruthenium(II) complexes that contain both asymmetric and symmetric bidentate polypyridyl ligands were synthesized. Molecular structures of the complexes were determined by X-ray crystallography to distinguish their steric configuration. Structural, computational, and electrochemical analysis revealed some differences between the isomers. Photo- and thermal reactions indicated that the reactivities of the complexes were significantly affected by both their structures and the ligands involved.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Soman, Suraj, Jennifer C. Manton, Jane L. Inglis, Yvonne Halpin, Brendan Twamley, Edwin Otten, Wesley R. Browne, Luisa De Cola, Johannes G. Vos und Mary T. Pryce. „New synthetic pathways to the preparation of near-blue emitting heteroleptic Ir(iii)N6 coordinated compounds with microsecond lifetimes“. Chem. Commun. 50, Nr. 49 (2014): 6461–63. http://dx.doi.org/10.1039/c4cc02249a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Byrne, Aisling, Christopher S. Burke und Tia E. Keyes. „Precision targeted ruthenium(ii) luminophores; highly effective probes for cell imaging by stimulated emission depletion (STED) microscopy“. Chemical Science 7, Nr. 10 (2016): 6551–62. http://dx.doi.org/10.1039/c6sc02588a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Viere, Erin J., Ashley E. Kuhn, Margaret H. Roeder, Nicholas A. Piro, W. Scott Kassel, Timothy J. Dudley und Jared J. Paul. „Spectroelectrochemical studies of a ruthenium complex containing the pH sensitive 4,4′-dihydroxy-2,2′-bipyridine ligand“. Dalton Transactions 47, Nr. 12 (2018): 4149–61. http://dx.doi.org/10.1039/c7dt04554a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Lenis-Rojas, Oscar, Catarina Roma-Rodrigues, Alexandra Fernandes, Andreia Carvalho, Sandra Cordeiro, Jorge Guerra-Varela, Laura Sánchez et al. „Evaluation of the In Vitro and In Vivo Efficacy of Ruthenium Polypyridyl Compounds against Breast Cancer“. International Journal of Molecular Sciences 22, Nr. 16 (18.08.2021): 8916. http://dx.doi.org/10.3390/ijms22168916.

Der volle Inhalt der Quelle
Annotation:
The clinical success of cisplatin, carboplatin, and oxaliplatin has sparked the interest of medicinal inorganic chemistry to synthesize and study compounds with non-platinum metal centers. Despite Ru(II)–polypyridyl complexes being widely studied and well established for their antitumor properties, there are not enough in vivo studies to establish the potentiality of this type of compound. Therefore, we report to the best of our knowledge the first in vivo study of Ru(II)–polypyridyl complexes against breast cancer with promising results. In order to conduct our study, we used MCF7 zebrafish xenografts and ruthenium complexes [Ru(bipy)2(C12H8N6-N,N)][CF3SO3]2Ru1 and [{Ru(bipy)2}2(μ-C12H8N6-N,N)][CF3SO3]4Ru2, which were recently developed by our group. Ru1 and Ru2 reduced the tumor size by an average of 30% without causing significant signs of lethality when administered at low doses of 1.25 mg·L−1. Moreover, the in vitro selectivity results were confirmed in vivo against MCF7 breast cancer cells. Surprisingly, this work suggests that both the mono- and the dinuclear Ru(II)–polypyridyl compounds have in vivo potential against breast cancer, since there were no significant differences between both treatments, highlighting Ru1 and Ru2 as promising chemotherapy agents in breast cancer therapy.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie