Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Polymerization“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Polymerization" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Polymerization"
Chen, Mao, Honghong Gong und Yu Gu. „Controlled/Living Radical Polymerization of Semifluorinated (Meth)acrylates“. Synlett 29, Nr. 12 (18.04.2018): 1543–51. http://dx.doi.org/10.1055/s-0036-1591974.
Der volle Inhalt der QuellePenczek, Stanislaw, Julia Pretula und Stanislaw Slomkowski. „Ring-opening polymerization“. Chemistry Teacher International 3, Nr. 2 (15.03.2021): 33–57. http://dx.doi.org/10.1515/cti-2020-0028.
Der volle Inhalt der QuelleCheah, Pohlee, Caitlin N. Bhikha, John H. O’Haver und Adam E. Smith. „Effect of Oxygen and Initiator Solubility on Admicellar Polymerization of Styrene on Silica Surfaces“. International Journal of Polymer Science 2017 (2017): 1–7. http://dx.doi.org/10.1155/2017/6308603.
Der volle Inhalt der QuellePrescott, S. W., M. J. Ballard, E. Rizzardo und R. G. Gilbert. „RAFT in Emulsion Polymerization: What Makes it Different?“ Australian Journal of Chemistry 55, Nr. 7 (2002): 415. http://dx.doi.org/10.1071/ch02073.
Der volle Inhalt der QuelleLowe, A. B., und C. L. McCormick. „Homogeneous Controlled Free Radical Polymerization in Aqueous Media“. Australian Journal of Chemistry 55, Nr. 7 (2002): 367. http://dx.doi.org/10.1071/ch02053.
Der volle Inhalt der QuelleZhang, Xiaoqian, Wenli Guo, Yibo Wu, Liangfa Gong, Wei Li, Xiaoning Li, Shuxin Li, Yuwei Shang, Dan Yang und Hao Wang. „Cationic polymerization of p-methylstyrene in selected ionic liquids and polymerization mechanism“. Polymer Chemistry 7, Nr. 32 (2016): 5099–112. http://dx.doi.org/10.1039/c6py00796a.
Der volle Inhalt der QuelleJenkins, Aubrey D., Richard G. Jones und Graeme Moad. „Terminology for reversible-deactivation radical polymerization previously called "controlled" radical or "living" radical polymerization (IUPAC Recommendations 2010)“. Pure and Applied Chemistry 82, Nr. 2 (18.11.2009): 483–91. http://dx.doi.org/10.1351/pac-rep-08-04-03.
Der volle Inhalt der QuelleHU, ZHIGANG, und DAN ZHAO. „POLYMERIZATION WITHIN CONFINED NANOCHANNELS OF POROUS METAL-ORGANIC FRAMEWORKS“. Journal of Molecular and Engineering Materials 01, Nr. 02 (Juni 2013): 1330001. http://dx.doi.org/10.1142/s2251237313300015.
Der volle Inhalt der QuelleWang, Qiao, Jin Liang Li, Ai Ping Fu und Hong Liang Li. „Effect Factors on the Preparation of Polystyrene Microspheres by Emulsifier-Free Emulsion Polymerization“. Advanced Materials Research 926-930 (Mai 2014): 304–7. http://dx.doi.org/10.4028/www.scientific.net/amr.926-930.304.
Der volle Inhalt der QuelleZhang, Jie, Zhiming Zhang, Fulin Yang, Haoke Zhang, Jingzhi Sun und Benzhong Tang. „Metal-Free Catalysts for the Polymerization of Alkynyl-Based Monomers“. Catalysts 11, Nr. 1 (22.12.2020): 1. http://dx.doi.org/10.3390/catal11010001.
Der volle Inhalt der QuelleDissertationen zum Thema "Polymerization"
Hajime, Kammiyada. „Ring-Expansion Cationic Polymerization:A New Precision Polymerization for Cyclic Polymers“. 京都大学 (Kyoto University), 2017. http://hdl.handle.net/2433/225628.
Der volle Inhalt der QuelleAran, Bengi. „Polymerization And Characterization Of Methylmethacrylate By Atom Transfer Radical Polymerization“. Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605042/index.pdf.
Der volle Inhalt der Quelledimethyl 2,2&rsquo
bipyridine. Polymers with controlled molecular weight were obtained. The polymer chains were shown by NMR investigation to be mostly syndiotactic. The molecular weight and molecular weight distribution of some polymer samples were measured by GPC method. The K and a constants in [h]=K Ma equation were measured as 9.13x10-5 and 0.74, respectively. FT-IR and X-Ray results showed regularity in polymer chains. The molecular weight-Tg relations were verified from results of molecular weight-DSC results.
Barnette, Darrell Thomas. „Continuous miniemulsion polymerization“. Diss., Georgia Institute of Technology, 1987. http://hdl.handle.net/1853/12518.
Der volle Inhalt der QuelleEndsor, Robert M. „Living cationic polymerization“. Thesis, Aston University, 1997. http://publications.aston.ac.uk/9597/.
Der volle Inhalt der QuelleBrodsky, Colin John. „Graft polymerization lithography“. Access restricted to users with UT Austin EID Full text (PDF) from UMI/Dissertation Abstracts International, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3024998.
Der volle Inhalt der QuelleVale, Hugo. „Population Balance Modeling of Emulsion Polymerization Reactors : applications to Vinyl Chloride Polymerization“. Lyon 1, 2007. http://www.theses.fr/2007LYO10034.
Der volle Inhalt der QuelleCette thèse est une contribution au développement de modèles mécanistiques de la polymérisation en émulsion et, plus particulièrement, une contribution à la modélisation de la formation des particules et de leur distribution de taille (DTP) lors de la polymérisation en émulsion du chlorure de vinyle. La première partie de l'étude est consacrée à l'obtention de données expérimentales. Des polymérisations ab initio ont été réalisées afin d'obtenir des données fiables sur l'effet de la concentration de tensioactif, concentration d'initiateur, vitesse d'agitation et rapport monomère/eau sur le nombre de particules formées et sur la cinétique de polymérisation. Des polymérisations ensemencées ont également été réalisées afin de déterminer l'influence de la quantité de semence et de la concentration de tensioactif sur la formation de particules par nucléation secondaire. Enfin, les isothermes d'adsorption du SDS et du SDBS sur des particules de latex de poly (chlorure de vinyle) ont été déterminées. La deuxième partie de l'étude concerne le développement et la validation du modèle de polymérisation. Celui-ci à la particularité d'utiliser les bilans de population propres aux systèmes ‘zéro-un-deux' pour déterminer la distribution jointe du nombre de radicaux et de la taille des particules. Dans l'ensemble, les résultats obtenus montrent que le modèle proposé est capable de décrire les principaux comportements retrouvés lors des polymérisations avec des valeurs physiquement plausibles des paramètres inconnus ou ajustables. Pour ce qui concerne la formation des particules, il s'avère que la prise en compte de la possibilité de nucléation (homogène ou micellaire) par les radicaux désorbés aide à expliquer les valeurs élevées du nombre de particules ainsi que l'effet négligeable de la concentration d'initiateur sur le nombre de particules. En autre, il est démontré que le phénomène d'agrégation des particules doit être pris en considération afin d'obtenir des DTPs cohérentes. Dans la troisième et dernière partie, deux nouvelles méthodes numériques pour la résolution de bilans de population d'intérêt pour la modélisation des systèmes de polymérisation en émulsion sont proposées et analysées
Ding, Shijie. „Atom transfer radical polymerization“. Laramie, Wyo. : University of Wyoming, 2006. http://proquest.umi.com/pqdweb?did=1225138911&sid=1&Fmt=2&clientId=18949&RQT=309&VName=PQD.
Der volle Inhalt der QuelleSong, Zhiqiang. „Kinetics of emulsion polymerization“. Diss., Georgia Institute of Technology, 1988. http://hdl.handle.net/1853/10148.
Der volle Inhalt der QuelleWong, Ji Sam. „Modeling polymerization-based amplification“. Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/104123.
Der volle Inhalt der QuelleThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 117-120).
Eosin, a photoreducible xanthene derivative, acts as a Type II photoinitiator of free radical polymerizations when used in combination with alcohols or amines as co-initiators. Previous work utilizing eosin in polymerizations focused on high concentrations of initiators but it has recently been gaining use in bio-applications at lower concentrations due to its ability to initiate polymerizations when illuminated by harmless visible light even in the presence of orders-of-magnitude larger amounts of dissolved oxygen which acts as an inhibitor. We investigated the mechanism behind eosin's role in the polymerization process and its ability to initiate polymerization at concentrations lower than that of oxygen. A series of model simulation studies that systematically examined the effects of including additional elementary reactions based on proposed reactions in published literature into the classical free radical polymerization scheme without fitting any unknown parameters to experimental results were performed and analyzed. The first study examined the effect on having an eosin regeneration reaction between the reduced eosin radical which is formed during the photogeneration of free radicals, and the peroxy radical formed by inhibiting reactions of propagating radicals with oxygen. This reaction results in an unreactive hydroperoxy species and the regeneration of ground state eosin which can then produce even more radicals that undergo propagation. The simulation results indicated that the additional eosin regeneration reaction did explain eosin's ability to initiate polymerization at lower concentrations than oxygen, but the best predicted times required for the formation of polymer was larger than experiments by an order of magnitude, suggesting that the reaction scheme was incomplete. We subsequently incorporated an amine chain peroxidation reaction into the overall reaction scheme and determined the effects of such a change. The amine chain peroxidation reaction involves the peroxy radical extracting a hydrogen atom from the tertiary amines present in the reaction mixture, forming an unreactive hydroperoxide species and an amino-radical that can further undergo propagation. The addition of this reaction greatly increased the rate of oxygen consumption and reduced the predicted polymerization times to an order of magnitude lower than experiments. In addition to purely kinetic studies on the overall reaction scheme, a one-dimensional reaction-diffusion model was also created to understand the effects of having a continuously diffusing oxygen flux on the overall polymerization process. The time course of polymerization and spatial variations when using the various reaction schemes were analyzed and contrasted. The models predicted the formation of a reaction front which forms at the onset of polymerization and slowly moves towards the closed surface, tracking the diffusion of oxygen back into the reaction system. A surface region of higher eosin concentrations was also simulated to model the effects of binding events occurring in polymerization-based amplification (PBA). The addition of a small amount of eosin on the surface resulted in slightly faster predicted polymerization times close to the surface, similar to experimental observations where a surface polymer is first formed before the whole solution polymerizes where binding events have occurred.
by Ji Sam Wong.
Ph. D.
Qi, Genggeng. „Unconventional radical miniemulsion polymerization“. Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26547.
Der volle Inhalt der QuelleCommittee Chair: Jones, Christopher W.; Committee Chair: Schork, F. Joseph; Committee Member: Koros, William J.; Committee Member: Lyon, Andrew; Committee Member: Nenes, Athanasios. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Bücher zum Thema "Polymerization"
Hadjichristidis, Nikos, und Akira Hirao, Hrsg. Anionic Polymerization. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-54186-8.
Der volle Inhalt der QuelleBelfield, Kevin D., und James V. Crivello, Hrsg. Photoinitiated Polymerization. Washington, DC: American Chemical Society, 2003. http://dx.doi.org/10.1021/bk-2003-0847.
Der volle Inhalt der QuelleArjunan, Palanisamy, James E. McGrath und Thomas L. Hanlon, Hrsg. Olefin Polymerization. Washington, DC: American Chemical Society, 1999. http://dx.doi.org/10.1021/bk-2000-0749.
Der volle Inhalt der QuelleFaust, Rudolf, und Timothy D. Shaffer, Hrsg. Cationic Polymerization. Washington, DC: American Chemical Society, 1997. http://dx.doi.org/10.1021/bk-1997-0665.
Der volle Inhalt der QuelleQin, Anjun, und Ben Zhong Tang, Hrsg. Click Polymerization. Cambridge: Royal Society of Chemistry, 2018. http://dx.doi.org/10.1039/9781788010108.
Der volle Inhalt der QuelleBuchmeiser, Michael R., Hrsg. Metathesis Polymerization. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/b101315.
Der volle Inhalt der QuelleR, Buchmeiser Michael, Hrsg. Metathesis polymerization. Berlin: Springer, 2005.
Den vollen Inhalt der Quelle finden1960-, Belfield Kevin, und Crivello James V. 1940-, Hrsg. Photoinitiated polymerization. Washington, DC: American Chemical Society, 2003.
Den vollen Inhalt der Quelle findenKennedy, Joseph Paul. Carbocationic polymerization. Malabar, Fla: Krieger Pub. Co., 1991.
Den vollen Inhalt der Quelle findenYasuda, H. Plasma polymerization. Orlando: Academic Press, 1985.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Polymerization"
Ambade, Ashootosh V. „Ring-Opening Polymerization and Metathesis Polymerizations“. In Metal-Catalyzed Polymerization, 137–60. Boca Raton : CRC Press, 2018.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315153919-4.
Der volle Inhalt der QuelleTadros, Tharwat. „Polymerization“. In Encyclopedia of Colloid and Interface Science, 995–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-20665-8_134.
Der volle Inhalt der QuelleGooch, Jan W. „Polymerization“. In Encyclopedic Dictionary of Polymers, 564. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_9133.
Der volle Inhalt der QuelleDyson, R. W. „Polymerization“. In Specialty Polymers, 20–37. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4615-7894-9_3.
Der volle Inhalt der QuelleDyson, R. W. „Polymerization“. In Specialty Polymers, 19–36. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-009-0025-7_3.
Der volle Inhalt der QuelleMishra, Munmaya, und Biao Duan. „Polymerization“. In The Essential Handbook of Polymer Terms and Attributes, 175. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003161318-171.
Der volle Inhalt der QuelleMILLER, I. K., und J. ZIMMERMAN. „Condensation Polymerization and Polymerization Mechanisms“. In ACS Symposium Series, 159–73. Washington, D.C.: American Chemical Society, 1985. http://dx.doi.org/10.1021/bk-1985-0285.ch008.
Der volle Inhalt der QuelleRatkanthwar, Kedar, Junpeng Zhao, Hefeng Zhang, Nikos Hadjichristidis und Jimmy Mays. „Schlenk Techniques for Anionic Polymerization“. In Anionic Polymerization, 3–18. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-54186-8_1.
Der volle Inhalt der QuelleChen, Yougen, Keita Fuchise, Toshifumi Satoh und Toyoji Kakuchi. „Group Transfer Polymerization of Acrylic Monomers“. In Anionic Polymerization, 451–94. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-54186-8_10.
Der volle Inhalt der QuelleLi, Zhong, und Durairaj Baskaran. „Surface-Initiated Anionic Polymerization from Nanomaterials“. In Anionic Polymerization, 495–537. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-54186-8_11.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Polymerization"
Johnson, Jason E., Yijie Chen, Paul Somers und Xianfan Xu. „Modeling of polymerization kinetics in femtosecond two photon polymerization“. In Synthesis and Photonics of Nanoscale Materials XVIII, herausgegeben von Andrei V. Kabashin, Jan J. Dubowski, David B. Geohegan und Maria Farsari. SPIE, 2021. http://dx.doi.org/10.1117/12.2581960.
Der volle Inhalt der QuelleCademartiri, Ludovico, Reihaneh Malakooti, Georg von Freymann, Yasemin Akçakir, André C. Arsenault, Srebri Petrov, Andrea Migliori et al. „Nanocrystal Plasma Polymerization“. In PHYSICS OF SEMICONDUCTORS: 28th International Conference on the Physics of Semiconductors - ICPS 2006. AIP, 2007. http://dx.doi.org/10.1063/1.2730258.
Der volle Inhalt der QuellePojman, John. „Frontal polymerization in microgravity“. In 36th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1998. http://dx.doi.org/10.2514/6.1998-813.
Der volle Inhalt der QuelleJohnson, Heather F., Sahban N. Ozair, Andrew T. Jamieson, Brian C. Trinque, Colin C. Brodsky und C. Grant Willson. „Cationic graft polymerization lithography“. In Microlithography 2003, herausgegeben von Roxann L. Engelstad. SPIE, 2003. http://dx.doi.org/10.1117/12.484974.
Der volle Inhalt der QuelleCENTELLAS, POLETTE, MOSTAFA YOURDKHANI, IAN D. ROBERTSON, JEFFREY S. MOORE, NANCY R. SOTTOS und SCOTT R. WHITE. „Frontal Polymerization of Dicyclopentadiene“. In American Society for Composites 2017. Lancaster, PA: DEStech Publications, Inc., 2017. http://dx.doi.org/10.12783/asc2017/15291.
Der volle Inhalt der QuelleWang, Chunhong, und Ming Zhang. „Study on the Self-polymerization and Co-polymerization Properties of Gadolinium Methacrylate“. In International Conference on Industrial Application Engineering 2017. The Institute of Industrial Applications Engineers, 2017. http://dx.doi.org/10.12792/iciae2017.022.
Der volle Inhalt der QuelleZhang, Yujuan, Jing Xu, Mengting Duan, Dandan Zhu, Defeng Wu, Ming Zhang und Chunhong Wang. „An Investigation on Self-polymerization and Co-polymerization Properties of Lead Methacrylate“. In International Conference on Industrial Application Engineering 2019. The Institute of Industrial Applications Engineers, 2019. http://dx.doi.org/10.12792/iciae2019.015.
Der volle Inhalt der QuelleLiu, Ting, Shi-Jian Chen und Bo-Quan Jiang. „Preparation of Methylphenylvinyl Raw Rubber by Bulk Polymerization and Ring-Opening Polymerization Methods“. In 2015 International Conference on Material Science and Applications (icmsa-15). Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icmsa-15.2015.61.
Der volle Inhalt der QuelleClare, D., G. Gharst und T. Sanders. „Transglutaminase Polymerization of Peanut Proteins“. In 13th World Congress of Food Science & Technology. Les Ulis, France: EDP Sciences, 2006. http://dx.doi.org/10.1051/iufost:20060479.
Der volle Inhalt der QuelleMatei, A., M. Zamfirescu, F. Jipa, C. Luculescu, M. Dinescu, E. C. Buruiana, T. Buruiana, L. E. Sima, S. M. Petrescu und Claude Phipps. „Two Photon Polymerization of Ormosils“. In INTERNATIONAL SYMPOSIUM ON HIGH POWER LASER ABLATION 2010. AIP, 2010. http://dx.doi.org/10.1063/1.3507180.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Polymerization"
Matyjaszewski, Krzysztof. Introduction of Living Polymerization. Living and/or Controlled Polymerization. Fort Belvoir, VA: Defense Technical Information Center, Juni 1994. http://dx.doi.org/10.21236/ada280800.
Der volle Inhalt der QuelleTaylor, C., und C. Wilkerson. Surface polymerization agents. Office of Scientific and Technical Information (OSTI), Dezember 1996. http://dx.doi.org/10.2172/442223.
Der volle Inhalt der QuelleSchrock, Richard R. Ring Opening Metathesis Polymerization. Fort Belvoir, VA: Defense Technical Information Center, Januar 1992. http://dx.doi.org/10.21236/ada244693.
Der volle Inhalt der QuelleTumas, W., K. Ott und R. T. Baker. Heterogeneous oxidative and polymerization processes. Office of Scientific and Technical Information (OSTI), November 1998. http://dx.doi.org/10.2172/672308.
Der volle Inhalt der QuelleGrubbs, Robert H. Living Catalysts for Cyclohexdiene Polymerization. Fort Belvoir, VA: Defense Technical Information Center, Juli 1996. http://dx.doi.org/10.21236/ada326125.
Der volle Inhalt der QuelleChen, Peng. Single-Molecule Visualization of Living Polymerization. Fort Belvoir, VA: Defense Technical Information Center, Februar 2014. http://dx.doi.org/10.21236/ada606984.
Der volle Inhalt der QuelleAdnani-Gleason, Z. Polymerization of Amino Acids on Kaolinite. Portland State University Library, Januar 2000. http://dx.doi.org/10.15760/etd.2372.
Der volle Inhalt der QuelleKatz, Thomas J. Polymer Syntheses and Mechanisms of Polymerization. Fort Belvoir, VA: Defense Technical Information Center, März 1991. http://dx.doi.org/10.21236/ada233034.
Der volle Inhalt der QuelleHurlbutt, Katey. Silicone Resins for Vat Polymerization Printing. Office of Scientific and Technical Information (OSTI), März 2024. http://dx.doi.org/10.2172/2318929.
Der volle Inhalt der QuelleWaite, J. H. Polymerization of Quinone-Crosslinked Marine Bioadhesive Protein. Fort Belvoir, VA: Defense Technical Information Center, Oktober 1988. http://dx.doi.org/10.21236/ada200224.
Der volle Inhalt der Quelle