Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Polymer colloids.

Zeitschriftenartikel zum Thema „Polymer colloids“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Polymer colloids" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Lattuada, Marco, und Kata Dorbic. „Polymer Colloids: Moving beyond Spherical Particles“. CHIMIA 76, Nr. 10 (26.10.2022): 841. http://dx.doi.org/10.2533/chimia.2022.841.

Der volle Inhalt der Quelle
Annotation:
When thinking about colloidal particles, the fist image that comes into mind is that of tiny little polystyrene spheres with a narrow size distribution. While spherical polymer colloids are one of the workhorses of colloid science, scientists have been working on the development of progressively advanced strategies to move beyond particles with spherical shapes, and prepared polymer colloids with more complex morphologies. This short review aims at providing a summary of these developments, focusing primarily on methods applicable to submicron particles, with an eye towards their applications and some discussion about advantages and drawbacks of the various approaches.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Lee, Kyoungmun, und Siyoung Q. Choi. „Stratification of polymer–colloid mixtures via fast nonequilibrium evaporation“. Soft Matter 16, Nr. 45 (2020): 10326–33. http://dx.doi.org/10.1039/d0sm01504k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Priyadarshini, N., M. Sampath, Shekhar Kumar, U. Kamachi Mudali und R. Natarajan. „Probing Uranium(IV) Hydrolyzed Colloids and Polymers by Light Scattering“. Journal of Nuclear Chemistry 2014 (26.03.2014): 1–10. http://dx.doi.org/10.1155/2014/232967.

Der volle Inhalt der Quelle
Annotation:
Tetravalent uranium readily undergoes hydrolysis even in highly acidic aqueous solutions. In the present work, solutions ranging from 0.4 to 19 mM (total U) concentration (1<pH<4) are carefully investigated by light scattering technique with special emphasis on polymerization leading to colloid formation. The results clearly indicate that the concentration has significant effect on particle size as well as stability of colloids. With increasing concentration the size of colloids formed is smaller due to more crystalline nature of the colloids. Stability of colloids formed at lower concentration is greater than that of colloids formed at higher concentration. Weight average molecular weight of the freshly prepared and colloidal polymers aged for 3 days is determined from the Debye plot. It increases from 1,800 to 13,000 Da. 40–50 atoms of U are considered to be present in the polymer. Positive value of second virial coefficient shows that solute-solvent interaction is high leading to stable suspension. The results of this work are a clear indication that U(IV) hydrolysis does not differ from hydrolysis of Pu(IV).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

La Mesa, Camillo. „Hybrid Colloids Made with Polymers“. Applied Sciences 14, Nr. 12 (13.06.2024): 5135. http://dx.doi.org/10.3390/app14125135.

Der volle Inhalt der Quelle
Annotation:
Polymers adsorb onto nanoparticles, NPs, by different mechanisms. Thus, they reduce coagulation, avoid undesired phase separation or clustering, and give rise to hybrid colloids. These find uses in many applications. In cases of noncovalent interactions, polymers adsorb onto nanoparticles, which protrude from their surface; the polymer in excess remains in the medium. In covalent mode, conversely, polymers form permanent links with functional groups facing outward from the NPs’ surface. Polymers in contact with the solvent minimize attractive interactions among the NPs. Many contributions stabilize such adducts: the NP–polymer, polymer–polymer, and polymer–solvent interaction modes are the most relevant. Changes in the degrees of freedom of surface-bound polymer portions control the stability of the adducts they form with NPs. Wrapped, free, and protruding polymer parts favor depletion and control the adducts’ properties if surface adsorption is undesired. The binding of surfactants onto NPs takes place too, but their stabilizing effect is much less effective than the one due to polymers. The underlying reason for this is that surfactants easily adsorb onto surfaces, but they desorb if the resulting adducts are not properly stabilized. Polymers interact with surfactants, both when the latter are in molecular or associated forms. The interactions occur between polymers and ionic surfactants or amphiphiles associated with vesicular entities. Hybrids obtained in these ways differ each from each other. The mechanisms governing hybrid formation are manifold and span from being purely electrostatic to other modes. The adducts that do form are quite diverse in their sizes, shapes, and features, and depend significantly on composition and mole ratios. Simple approaches clarify the interactions among different particle types that yield hybrids.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ali, Imran, Sara H. Althakfi, Mohammad Suhail, Marcello Locatelli, Ming-Fa Hsieh, Mosa Alsehli und Ahmed M. Hameed. „Advances in Polymeric Colloids for Cancer Treatment“. Polymers 14, Nr. 24 (13.12.2022): 5445. http://dx.doi.org/10.3390/polym14245445.

Der volle Inhalt der Quelle
Annotation:
Polymer colloids have remarkable features and are gaining importance in many areas of research including medicinal science. Presently, the innovation of cancer drugs is at the top in the world. Polymer colloids have been used as drug delivery and diagnosis agents in cancer treatment. The polymer colloids may be of different types such as micelles, liposomes, emulsions, cationic carriers, and hydrogels. The current article describes the state-of-the-art polymer colloids for the treatment of cancer. The contents of this article are about the role of polymeric nanomaterials with special emphasis on the different types of colloidal materials and their applications in targeted cancer therapy including cancer diagnoses. In addition, attempts are made to discuss future perspectives. This article will be useful for academics, researchers, and regulatory authorities.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Smith, Gregory N., Matthew J. Derry, James E. Hallett, Joseph R. Lovett, Oleksander O. Mykhaylyk, Thomas J. Neal, Sylvain Prévost und Steven P. Armes. „Refractive index matched, nearly hard polymer colloids“. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 475, Nr. 2226 (Juni 2019): 20180763. http://dx.doi.org/10.1098/rspa.2018.0763.

Der volle Inhalt der Quelle
Annotation:
Refractive index matched particles serve as essential model systems for colloid scientists, providing nearly hard spheres to explore structure and dynamics. The poly(methyl methacrylate) latexes typically used are often refractive index matched by dispersing them in binary solvent mixtures, but this can lead to undesirable changes, such as particle charging or swelling. To avoid these shortcomings, we have synthesized refractive index matched colloids using polymerization-induced self-assembly (PISA) rather than as polymer latexes. The crucial difference is that these diblock copolymer nanoparticles consist of a single core-forming polymer in a single non-ionizable solvent. The diblock copolymer chosen was poly(stearyl methacrylate)–poly(2,2,2-trifluoroethyl methacrylate) (PSMA–PTFEMA), which self-assembles to form PTFEMA core spheres in n -alkanes. By monitoring scattered light intensity, n -tetradecane was found to be the optimal solvent for matching the refractive index of such nanoparticles. As expected for PISA syntheses, the diameter of the colloids can be controlled by varying the PTFEMA degree of polymerization. Concentrated dispersions were prepared, and the diffusion of the PSMA–PTFEMA nanoparticles as a function of volume fraction was measured. These diblock copolymer nanoparticles are a promising new system of transparent spheres for future colloidal studies.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Okubo, Masayoshi. „Polymer Colloids.“ Kobunshi 40, Nr. 10 (1991): 704–7. http://dx.doi.org/10.1295/kobunshi.40.704.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Huglin, Malcolm B. „Polymer colloids“. Polymer 27, Nr. 4 (April 1986): 635. http://dx.doi.org/10.1016/0032-3861(86)90253-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Soetrisno, Diego D., Carina D. V. Martínez Narváez, Mariah J. Gallegos, Vivek Sharma und Jacinta C. Conrad. „Pinching dynamics and extensional rheology of dense colloidal suspensions with depletion attractions“. Journal of Rheology 68, Nr. 1 (29.12.2023): 99–112. http://dx.doi.org/10.1122/8.0000717.

Der volle Inhalt der Quelle
Annotation:
We study the extensional flow properties by characterizing the capillarity-driven pinching dynamics of dense colloidal suspensions at a constant volume fraction ϕ=0.40 with polymer-induced depletion interactions using a dripping-onto-substrate (DoS) protocol. Methacrylate copolymer particles with dimethylacrylamide copolymer brushes are suspended in a refractive-index- and density-matched mixture of 80 (w/w)% glycerol in water with NaCl added to screen the electrostatic repulsions. Depletion attractions between the colloids are introduced by adding polyacrylamide polymers of weight and dispersity. The addition of polymer delays and modifies the pinch-off dynamics of the dense suspensions, depending on the size and dispersity of the polymer. The extensional relaxation time λE of suspensions collapses as a function of the normalized free volume polymer concentration c/c∗ with the corresponding polymer solutions, indicating that the elastic properties of the polymer solutions control the extensional time scale. Following the results of our previous study [Soetrisno et al., Macromolecules 56, 4919–4928 (2023)], the polymer size determines the scaling exponent of λE for colloid-polymer mixtures in the dilute regime and high dispersity shifts the concentration where the scaling of λE transitions from power-law to linear. The filament lifespans tf of colloid-polymer mixtures and of polymer solutions collapse onto a master curve as a function of c/c∗ when normalized by the filament lifespan of the corresponding fluid without polymer tf,0. These results provide insight into the role of the polymer size in dictating the pinching dynamics and extensional rheology of colloid-polymer mixtures and further suggest that the shear and extensional responses of these mixtures can be separately tuned through the concentrations of the two constituents.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Wang, Likun, Zhaoran Chu, Xuanjun Ning, Ziwei Huang, Wenwei Tang, Weizhong Jiang, Jiayi Ye und Cheng Chen. „Inverse Colloidal Crystal Polymer Coating with Monolayer Ordered Pore Structure“. Crystals 12, Nr. 3 (11.03.2022): 378. http://dx.doi.org/10.3390/cryst12030378.

Der volle Inhalt der Quelle
Annotation:
A functional lens coating, based on the structure of inversed colloidal photonic crystals, is proposed. The color-reflecting colloidal crystal was first prepared by self-assembly of nano-colloids and was infiltrated by adhesive polymer solution. As the polymer was crosslinked and the crystal array was removed, a robust mesh-like coating was achieved. Such a functional coating has good transmittance and has a shielding efficiency of ~9% for UV–blue light according to different particle sizes of the nano-colloids, making it an ideal functional material.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Forcada, Jacqueline, und Roque Hidalgo-Alvarez. „Functionalized Polymer Colloids: Synthesis and Colloidal Stability“. Current Organic Chemistry 9, Nr. 11 (01.07.2005): 1067–84. http://dx.doi.org/10.2174/1385272054368484.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Armes, Steven P. „Conducting polymer colloids“. Current Opinion in Colloid & Interface Science 1, Nr. 2 (April 1996): 214–20. http://dx.doi.org/10.1016/s1359-0294(96)80007-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Guzmán, Eduardo, und Armando Maestro. „Soft Colloidal Particles at Fluid Interfaces“. Polymers 14, Nr. 6 (11.03.2022): 1133. http://dx.doi.org/10.3390/polym14061133.

Der volle Inhalt der Quelle
Annotation:
The assembly of soft colloidal particles at fluid interfaces is reviewed in the present paper, with emphasis on the particular case of microgels formed by cross-linked polymer networks. The dual polymer/colloid character as well as the stimulus responsiveness of microgel particles pose a challenge in their experimental characterization and theoretical description when adsorbed to fluid interfaces. This has led to a controversial and, in some cases, contradictory picture that cannot be rationalized by considering microgels as simple colloids. Therefore, it is necessary to take into consideration the microgel polymer/colloid duality for a physically reliable description of the behavior of the microgel-laden interface. In fact, different aspects related to the above-mentioned duality control the organization of microgels at the fluid interface, and the properties and responsiveness of the obtained microgel-laden interfaces. This works present a critical revision of different physicochemical aspects involving the behavior of individual microgels confined at fluid interfaces, as well as the collective behaviors emerging in dense microgel assemblies.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Ding, Xuhan, Guang Xu, Dengfei Wang, Zhenmin Luo und Tao Wang. „Effect of Synergistic Aging on Bauxite Residue Dust Reduction Performance via the Application of Colloids, an Orthogonal Design-Based Study“. Polymers 13, Nr. 12 (17.06.2021): 1986. http://dx.doi.org/10.3390/polym13121986.

Der volle Inhalt der Quelle
Annotation:
The application of polymer colloids is a promising approach for bauxite residue dust pollution control. However, due to the existence of synergistic aging, the efficiency of colloid dynamic viscosity to predict the dust control performance of bauxite residue is unclear. Previous studies were also rarely performed under synergistic aging conditions. Thus, this paper investigates the relationship between colloids’ viscosity and dust control performance under synergistic aging modes. Results illustrated that the binary colloid achieved better dust control performance than unitary colloid for their higher viscosity and penetration resistance. For both unitary and binary colloid, higher viscosity results in better crust strength. A logarithmic relationship was found for viscosity and dust erosion resistance under unitary aging. However, Only the dynamic viscosity of colloids in solid-liquid two-phase conditions, rather than dissolved in deionized water, can effectively predict the dust control performance under synergistic aging conditions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

DEB, DEBABRATA, DOROTHEA WILMS, ALEXANDER WINKLER, PETER VIRNAU und KURT BINDER. „METHODS TO COMPUTE PRESSURE AND WALL TENSION IN FLUIDS CONTAINING HARD PARTICLES“. International Journal of Modern Physics C 23, Nr. 08 (August 2012): 1240011. http://dx.doi.org/10.1142/s0129183112400116.

Der volle Inhalt der Quelle
Annotation:
Colloidal systems are often modeled as fluids of hard particles (possibly with an additional soft attraction, e.g. caused by polymers also contained in the suspension). In simulations of such systems, the virial theorem cannot be straightforwardly applied to obtain the components of the pressure tensor. In systems confined by walls, it is hence also not straightforward to extract the excess energy due to the wall (the “wall tension”) from the pressure tensor anisotropy. A comparative evaluation of several methods to circumvent this problem is presented, using as examples fluids of hard spheres and the Asakura–Oosawa model of colloid-polymer mixtures with a size ratio q = 0.15 (for which the effect of the polymers can be integrated out to yield an effective attractive potential between the colloids). Factors limiting the accuracy of the various methods are carefully discussed, and controlling these factors very good mutual agreement between the various methods is found.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Wang, Bin, Margot Jacquet, Kunzhou Wang, Kun Xiong, Minhao Yan, Jérémie Courtois und Guy Royal. „pH-Induced fragmentation of colloids based on responsive self-assembled copper(ii) metallopolymers“. New Journal of Chemistry 42, Nr. 10 (2018): 7823–29. http://dx.doi.org/10.1039/c7nj05100j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

La Mesa, Camillo, und Gianfranco Risuleo. „Polymer Wrapping onto Nanoparticles Induces the Formation of Hybrid Colloids“. Coatings 13, Nr. 5 (24.04.2023): 823. http://dx.doi.org/10.3390/coatings13050823.

Der volle Inhalt der Quelle
Annotation:
Polymers stabilize the nanoparticles onto which they wrap, avoiding coagulation and undesired phase separation processes. Wrapping gives rise to hybrid colloids, and is useful in bio-intended applications. In non-covalent interaction modes, polymers physically adsorb onto the nanoparticles’ surface, NPs, and some of their portions protrude outside. Both their non-interacting parts and the free polymers are in contact with the solvent, and/or are dispersed in it. Wrapping/protruding ratios were forecast with a simple statistical thermodynamic model, and the related energy calculated. The wrapping efficiency is controlled by different contributions, which stabilize polymer/NP adducts. The most relevant ones are ascribed to the NP-polymer, polymer–polymer, and polymer–solvent interaction modes; the related energies are quite different from each other. Changes in the degrees of freedom for surface-bound polymer portions control the stability of adducts they form with the NPs. The links between wrapped, free, and protruding states also account for depletion, and control the system’s properties when the surface adsorption of hosts is undesired. Calculations based on the proposed approach were applied to PEO wrapping onto SiO2, silica, and nanoparticles. The interaction energy, W, and the changes in osmotic pressure associated with PEO binding onto the NPs have been evaluated according to the proposed model.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Cerdà, Joan Josep, Josep Batle, Carles Bona-Casas, Joan Massó und Tomàs Sintes. „Depletion Interactions at Interfaces Induced by Ferromagnetic Colloidal Polymers“. Polymers 16, Nr. 6 (15.03.2024): 820. http://dx.doi.org/10.3390/polym16060820.

Der volle Inhalt der Quelle
Annotation:
The pair-interaction force profiles for two non-magnetic colloids immersed in a suspension of ferromagnetic colloidal polymers are investigated via Langevin simulations. A quasi-two-dimensional approach is taken to study the interface case and a range of colloidal size ratios (non-magnetic:magnetic) from 6:1 up to 20:1 have been considered in this work. Simulations show that when compared with non-magnetic suspensions, the magnetic polymers strongly modify the depletion force profiles leading to strongly oscillatory behavior. Larger polymer densities and size ratios increase the range of the depletion forces, and in general, also their strength; the force barrier peaks at short distances show more complex behavior. As the length of the ferromagnetic polymers increases, the force profiles become more regular, and stable points with their corresponding attraction basins develop. The number of stable points and the distance at which they occur can be tuned through the modification of the field strength H and the angle θ formed by the field and the imaginary axis joining the centers of the two non-magnetic colloids. When not constrained, the net forces acting on the two colloids tend to align them with the field till θ=0∘. At this angle, the force profiles turn out to be purely attractive, and therefore, these systems could be used as a funneling tool to form long linear arrays of non-magnetic particles. Torsional forces peak at θ=45∘ and have minimums at θ=0∘ as well as θ=90∘ which is an unstable orientation as slight deviations will evolve towards θ→0∘. Nonetheless, results suggest that the θ=90∘ orientation could be easily stabilized in several ways. In such a case, the stable points that the radial force profiles exhibit for this orthogonal orientation to the field could be used to control the distance between the two large colloids: their position and number can be controlled via H. Therefore, suspensions made of ferromagnetic colloidal polymers can be also useful in the creation of magnetic colloidal tweezers or ratchets. A qualitative explanation of all the observed phenomena can be provided in terms of how the geometrical constraints and the external field modify the conformations of the ferromagnetic polymers near the two large particles, and in turn, how both factors combine to create unbalanced Kelvin forces that oscillate in strength with the distance between the two non-magnetic colloids.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Puertas, A. M., und F. J. de las Nieves. „Colloidal Stability of Polymer Colloids with Variable Surface Charge“. Journal of Colloid and Interface Science 216, Nr. 2 (August 1999): 221–29. http://dx.doi.org/10.1006/jcis.1999.6294.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Egorov, Sergei A. „Depletion Interactions between Nanoparticles: The Effect of the Polymeric Depletant Stiffness“. Polymers 14, Nr. 24 (09.12.2022): 5398. http://dx.doi.org/10.3390/polym14245398.

Der volle Inhalt der Quelle
Annotation:
A Density Functional Theory is employed to study depletion interactions between nanoparticles mediated by semiflexible polymers. The four key parameters are the chain contour length and the persistence length of the polymeric depletant, its radius of gyration, and the nanoparticle radius. In the Density Functional Theory calculation of the depletion interaction between the nanoparticles mediated by semiflexible polymers, the polymer gyration radius is kept constant by varying the contour length and the persistence length simultaneously. This makes it possible to study the effect of the chain stiffness on the depletion potential of mean force between the nanoparticles for a given depletant size. It is found that the depletion attraction becomes stronger for stiffer polymer chains and larger colloids. The depletion potential of mean force is used as input to compute the phase diagram for an effective one-component colloidal system.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Aldana, Maximino, Miguel Fuentes-Cabrera und Martín Zumaya. „Self-Propulsion Enhances Polymerization“. Entropy 22, Nr. 2 (22.02.2020): 251. http://dx.doi.org/10.3390/e22020251.

Der volle Inhalt der Quelle
Annotation:
Self-assembly is a spontaneous process through which macroscopic structures are formed from basic microscopic constituents (e.g., molecules or colloids). By contrast, the formation of large biological molecules inside the cell (such as proteins or nucleic acids) is a process more akin to self-organization than to self-assembly, as it requires a constant supply of external energy. Recent studies have tried to merge self-assembly with self-organization by analyzing the assembly of self-propelled (or active) colloid-like particles whose motion is driven by a permanent source of energy. Here we present evidence that points to the fact that self-propulsion considerably enhances the assembly of polymers: self-propelled molecules are found to assemble faster into polymer-like structures than non self-propelled ones. The average polymer length increases towards a maximum as the self-propulsion force increases. Beyond this maximum, the average polymer length decreases due to the competition between bonding energy and disruptive forces that result from collisions. The assembly of active molecules might have promoted the formation of large pre-biotic polymers that could be the precursors of the informational polymers we observe nowadays.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Velgosova, Oksana, Lívia Mačák, Erika Múdra, Marek Vojtko und Maksym Lisnichuk. „Preparation, Structure, and Properties of PVA–AgNPs Nanocomposites“. Polymers 15, Nr. 2 (10.01.2023): 379. http://dx.doi.org/10.3390/polym15020379.

Der volle Inhalt der Quelle
Annotation:
The aim of the work was to prepare a polymer matrix composite doped by silver nanoparticles and analyze the influence of silver nanoparticles (AgNPs) on polymers’ optical and toxic properties. Two different colloids of AgNPs were prepared by chemical reduction. The first colloid, a blue one, contains stable triangular nanoparticles (the mean size of the nanoparticles was ~75 nm). UV–vis spectrophotometry showed that the second colloid, a yellow colloid, was very unstable. Originally formed spherical particles (~11 nm in diameter) after 25 days changed into a mix of differently shaped nanoparticles (irregular, triangular, rod-like, spherical, decahedrons, etc.), and the dichroic effect was observed. Pre-prepared AgNPs were added into the PVA (poly(vinyl alcohol)) polymer matrix and PVA–AgNPs composites (poly(vinyl alcohol) doped by Ag nanoparticles) were prepared. PVA–AgNPs thin layers (by a spin-coating technique) and fibers (by electrospinning and dip-coating techniques) were prepared. TEM and SEM techniques were used to analyze the prepared composites. It was found that the addition of AgNPs caused a change in the optical and antibiofilm properties of the non-toxic and colorless polymer. The PVA–AgNPs composites not only showed a change in color but a dichroic effect was also observed on the thin layer, and a good antibiofilm effect was also observed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Bezrukov, Artem, und Yury Galyametdinov. „Tuning Molecular Orientation Responses of Microfluidic Liquid Crystal Dispersions to Colloid and Polymer Flows“. International Journal of Molecular Sciences 24, Nr. 17 (31.08.2023): 13555. http://dx.doi.org/10.3390/ijms241713555.

Der volle Inhalt der Quelle
Annotation:
An important approach to molecular diagnostics is integrating organized substances that provide complex molecular level responses to introduced chemical and biological agents with conditions that optimize and distinguish such responses. In this respect, liquid crystal dispersions are attractive components of molecular diagnostic tools. This paper analyzes a colloid system, containing a nematic liquid crystal as a dispersed phase, and aqueous surfactant and polymer solutions as the continuous phases. We applied a microfluidic approach for tuning orientation of liquid crystal molecules in picoliter droplets immobilized on microchannel walls. Introduction of surfactant to the aqueous phase was found to proportionally increase the order parameter of liquid crystal molecules in microdroplets. Infusion of polymer solutions into surfactant-mediated microfluidic liquid crystal dispersions increased the order parameter at much lower surfactant concentrations, while further infusion of surfactant solutions randomized the orientation of liquid crystal molecules. These effects were correlated with the adsorption of surfactant molecules on surfaces of microdroplets, stabilizing the effect of a polymer matrix on bound surfactant ions and the formation of insoluble polymer–colloid aggregates, respectively. The revealed molecular behavior of liquid crystal dispersions may contribute to optimized synthesis of responsive liquid crystal dispersions for in-flow molecular diagnostics of polymers and colloids, and the development of functional laboratory-on-chip prototypes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Davis, T. P., und J. P. A. Heuts. „25th Australasian Polymer Symposium Special Issue“. Australian Journal of Chemistry 55, Nr. 7 (2002): 359. http://dx.doi.org/10.1071/ch02160.

Der volle Inhalt der Quelle
Annotation:
In February 2001 the 25th Australasian Polymer Symposium was held at the University of New England in Armidale and was attended by over 200 Australasian and international scientists; about a third of these were registered as students. Preceding the conference, a well-attended joint workshop/summer school with the theme of radical polymerization was convened in association with the Cooperative Research Centre for Polymers (CRC-P) and the ARC Key Centre for Polymer Colloids (KCPC).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Sung, An-Min, und Irja Piirma. „Electrosteric Stabilization of Polymer Colloids“. Langmuir 10, Nr. 5 (Mai 1994): 1393–98. http://dx.doi.org/10.1021/la00017a014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

KASAI, Kiyoshi. „Preparation of Monodisperse Polymer Colloids.“ Kobunshi 44, Nr. 5 (1995): 290–93. http://dx.doi.org/10.1295/kobunshi.44.290.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Wilkinson, Michael C., John Hearn und Paul A. Steward. „The cleaning of polymer colloids“. Advances in Colloid and Interface Science 81, Nr. 2 (Juli 1999): 77–165. http://dx.doi.org/10.1016/s0001-8686(98)00084-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Dobler, F., T. Pith, M. Lambla und Y. Holl. „Coalescence mechanisms of polymer colloids“. Journal of Colloid and Interface Science 152, Nr. 1 (August 1992): 1–11. http://dx.doi.org/10.1016/0021-9797(92)90002-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Dobler, F., T. Pith, M. Lambla und Y. Holl. „Coalescence mechanisms of polymer colloids“. Journal of Colloid and Interface Science 152, Nr. 1 (August 1992): 12–21. http://dx.doi.org/10.1016/0021-9797(92)90003-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Texter, John. „Polymer colloids in photonic materials“. Comptes Rendus Chimie 6, Nr. 11-12 (November 2003): 1425–33. http://dx.doi.org/10.1016/j.crci.2003.07.014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Ford, W. T., Rama Chandran und H. Turk. „Catalysts supported on polymer colloids“. Pure and Applied Chemistry 60, Nr. 3 (01.01.1988): 395–400. http://dx.doi.org/10.1351/pac198860030395.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Richards, R. W. „Future directions of polymer colloids“. Reactive Polymers 10, Nr. 1 (Januar 1989): 92–93. http://dx.doi.org/10.1016/0923-1137(89)90014-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Lamb, David, James F. Anstey, Doug-Youn Lee, Christopher M. Fellows, Michael J. Monteiro und Robert G. Gilbert. „Rational design of polymer colloids“. Macromolecular Symposia 174, Nr. 1 (September 2001): 13–28. http://dx.doi.org/10.1002/1521-3900(200109)174:1<13::aid-masy13>3.0.co;2-z.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Bénédicte, Thiébaut. „Palladium Colloids Stabilised in Polymer“. Platinum Metals Review 48, Nr. 2 (01.04.2004): 62–63. http://dx.doi.org/10.1595/003214004x4826263.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Marschelke, Claudia, Olga Diring und Alla Synytska. „Reconfigurable assembly of charged polymer-modified Janus and non-Janus particles: from half-raspberries to colloidal clusters and chains“. Nanoscale Advances 1, Nr. 9 (2019): 3715–26. http://dx.doi.org/10.1039/c9na00522f.

Der volle Inhalt der Quelle
Annotation:
pH-triggered, reconfigurable assembly of binary mixtures of hybrid hairy Janus and non-Janus colloids to half-raspberry-like constructs, colloidal clusters and colloidal chains depending on particle size ratio and numerical ratio.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Jin, Young-Jae, und Jinyoung Park. „QCM-Based HCl Gas Sensors Using Spin-Coated Aminated Polystyrene Colloids“. Polymers 12, Nr. 7 (17.07.2020): 1591. http://dx.doi.org/10.3390/polym12071591.

Der volle Inhalt der Quelle
Annotation:
Hydrogen chloride (HCl) gas is highly toxic to the human body. Therefore, HCl gas detection sensors should be installed at workplaces where trace HCl gas is continuously generated. Even though various polymer-based HCl-gas-sensing films have been developed, simpler and novel sensing platforms should be developed to ensure the cost effectiveness and reusability of the sensing platforms. Therefore, we present a simple strategy to fabricate reusable HCl-gas-sensing platforms using aminated polystyrene (a-PS) colloids and investigate their sensitivity, reusability, and selectivity using a quartz crystal microbalance (QCM). The reusable a-PS(1.0) colloidal sensor with a high degree of amination (DA) exhibited the highest binding capacity (102 μg/mg) based on the frequency change (Δf) during the HCl gas adsorption process. Further, its sensitivity and limit of detection (LOD) were 3.88 Hz/ppm and 5.002 ppm, respectively, at a low HCl gas concentration (<10 ppm). In addition, the sensitivity coefficient (k*) of the a-PS(1.0) colloid sensor with respect to HCHO was higher than that in the case of HF because of the lower binding affinity of the former with the a-PS(1.0) colloids. Based on these results, highly sensitive and reproducible a-PS colloids could be reused as an HCl-gas-sensing platform and used as an HCl sorbent in a gas column filter.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

HIMMI, MUSTAPHA, und LAILA MOHAMMADI. „EXTENSIVE STUDY OF INTERACTION FORCE BETWEEN SPHERICAL COLLOIDS AND STAR POLYMERS“. International Journal of Modern Physics B 26, Nr. 17 (21.06.2012): 1250105. http://dx.doi.org/10.1142/s0217979212501056.

Der volle Inhalt der Quelle
Annotation:
We consider a system consisting of very small colloidal particles clothed each by f end-grafted flexible polymer chains we regarded as star polymers, and hard spherical colloidal particles in a good solvent. Our main objective is to determine the expression of the interaction force between a spherical colloid and a star polymer as a function of distance between them. We limit ourselves to the case where the star polymer is smaller than the colloid. In the first part, the system is dissolved in a melt of short linear chains of polymerization degree P<N, where N denotes the polymerization degree of grafted chains. To compute the expected force, we consider two regimes: (1) high-grafting density [Formula: see text] and (2) small-grafting density (f < f*). For (f > f*), we show that the expression of the expected force coincides exactly with that of the case of a small molecular weight solvent. For (f < f*), we show that there is a change in behavior. In the second part, we assume that the lengths of the f grafted chains were randomly distributed and there is talk of a polydisperse star polymer. We show that the computation of the expected force depends on the relative values of the polymerization degree of longest grafted chain, N, when it is compared to the typical one Nc ~ f1/(α-1). Here α is the polydispersity exponent. We distinguish two regimes depending on whether N < Nc or N > Nc. For the regime with N < Nc, and comparing the expression of the force obtained for the monodisperse case, we can say that the polydispersity of grafted chains induce a drastic change of the force expression. For the regime with N > Nc, we found the existence of two distance-ranges. For small distances, the effective force expression is identical to that relative to the above case (N < Nc). But for high distances, the effective force expression is similar to the monodisperse case.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Hidalgo-Álvarez, R., A. Martín, A. Fernández, D. Bastos, F. Martínez und F. J. de las Nieves. „Electrokinetic properties, colloidal stability and aggregation kinetics of polymer colloids“. Advances in Colloid and Interface Science 67 (September 1996): 1–118. http://dx.doi.org/10.1016/0001-8686(96)00297-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Ortega-Vinuesa, J. L., A. Martı́n-Rodrı́guez und R. Hidalgo-Álvarez. „Colloidal Stability of Polymer Colloids with Different Interfacial Properties: Mechanisms“. Journal of Colloid and Interface Science 184, Nr. 1 (Dezember 1996): 259–67. http://dx.doi.org/10.1006/jcis.1996.0619.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Martens, C. M., R. Tuinier und M. Vis. „Depletion interaction mediated by semiflexible polymers“. Journal of Chemical Physics 157, Nr. 15 (21.10.2022): 154102. http://dx.doi.org/10.1063/5.0112015.

Der volle Inhalt der Quelle
Annotation:
We present a simple mean-field theory to describe the polymer-mediated depletion attraction between colloidal particles that accounts for the polymer’s chain stiffness. We find that for fixed polymer radius of gyration and volume fraction, the strength of this attraction increases with increasing chain stiffness in both dilute and semidilute concentration regimes. In contrast, the range of attraction monotonically decreases with chain stiffness in the dilute regime, while it attains a maximum in the semidilute regime. The obtained analytical expressions for the depletion interaction were compared with numerical self-consistent field lattice computations and shown to be in quantitative agreement. From the interaction potential between two spheres, we calculated the second osmotic virial coefficient B2, which appears to be a convex function of chain stiffness. A minimum of B2 as a function of chain stiffness was observed both in the numerical self-consistent field computations and the analytical theory. These findings help explain the general observation that semiflexible polymers are more effective depletants than flexible polymers and give insight into the phase behavior of mixtures containing spherical colloids and semiflexible polymers.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

van Ravensteijn, Bas G. P., und Willem K. Kegel. „Versatile procedure for site-specific grafting of polymer brushes on patchy particles via atom transfer radical polymerization (ATRP)“. Polymer Chemistry 7, Nr. 16 (2016): 2858–69. http://dx.doi.org/10.1039/c6py00450d.

Der volle Inhalt der Quelle
Annotation:
Combining chemically anisotropic colloids with Surface-Initiated ATRP enables for site-specific grafting of p(NIPAM) brushes. The resulting, partially grafted particles are employed as colloidal building blocks for finite-sized clusters.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Kramer, Thomas, Stephanie Scholz, Michael Maskos und Klaus Huber. „Colloid–polymer mixtures in solution with refractive index matched acrylate colloids“. Journal of Colloid and Interface Science 279, Nr. 2 (November 2004): 447–57. http://dx.doi.org/10.1016/j.jcis.2004.06.102.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Lim, Wei Kang, und Alan R. Denton. „Influence of polymer shape on depletion potentials and crowding in colloid–polymer mixtures“. Soft Matter 12, Nr. 8 (2016): 2247–52. http://dx.doi.org/10.1039/c5sm02863a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Heijnen, Sandrine M. F., Patrick van Vliet, Bonny W. M. Kuipers, Albert P. Philipse, Andrei V. Petukhov und Samia Ouhajji. „Depletion-Induced Chiral Chain Formation of Magnetic Spheres“. Materials 14, Nr. 3 (21.01.2021): 507. http://dx.doi.org/10.3390/ma14030507.

Der volle Inhalt der Quelle
Annotation:
Experimental evidence is presented for the spontaneous formation of chiral configurations in bulk dispersions of magnetized colloids that interact by a combination of anisotropic dipolar interactions and isotropic depletion attractions. The colloids are superparamagnetic silica spheres, magnetized and aligned by a carefully tuned uniform external magnetic field; isotropic attractions are induced by using poly(ethylene oxide) polymers as depleting agents. At specific polymer concentrations, sphere chains wind around each other to form helical structures–of the type that previously have only been observed in simulations on small sets of unconfined dipolar spheres with additional isotropic interactions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Barisci, J. N., P. C. Innis, L. A. P. Kane-Maguire, I. D. Norris und G. G. Wallace. „Preparation of chiral conducting polymer colloids“. Synthetic Metals 84, Nr. 1-3 (Januar 1997): 181–82. http://dx.doi.org/10.1016/s0379-6779(97)80703-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Barisci, J., T. Mansouri, G. Spinks, G. Wallace, D. Y. Kim und C. Y. Kim. „Electrochemical Preparation of Conducting Polymer Colloids“. Synthetic Metals 84, Nr. 1-3 (Januar 1997): 361–62. http://dx.doi.org/10.1016/s0379-6779(97)80782-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Monteiro, Michael J., und Michael F. Cunningham. „Polymer Colloids: Synthesis Fundamentals to Applications“. Biomacromolecules 21, Nr. 11 (09.11.2020): 4377–78. http://dx.doi.org/10.1021/acs.biomac.0c01462.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

von Ferber, C., Yu Holovatch, A. Jusufi, C. N. Likos, H. Löwen und M. Watzlawek. „Colloids with polymer stars: the interaction“. Journal of Molecular Liquids 93, Nr. 1-3 (September 2001): 151–54. http://dx.doi.org/10.1016/s0167-7322(01)00223-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Morozova, Tatiana I., und Arash Nikoubashman. „Surface Activity of Soft Polymer Colloids“. Langmuir 35, Nr. 51 (Dezember 2019): 16907–14. http://dx.doi.org/10.1021/acs.langmuir.9b03202.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Carter, Steve, Shui-Yu Lu und Stephen Rimmer. „Core-shell Molecular Imprinted Polymer Colloids“. Supramolecular Chemistry 15, Nr. 3 (01.04.2003): 213–20. http://dx.doi.org/10.1080/1061027031000078284.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie