Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Polyhistidine.

Zeitschriftenartikel zum Thema „Polyhistidine“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Polyhistidine" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

DePalma, Angelo. „Keeping Tabs on Polyhistidine Tags“. Genetic Engineering & Biotechnology News 36, Nr. 5 (März 2016): 22–24. http://dx.doi.org/10.1089/gen.36.05.12.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Xu, Zhaohui, und Sang Yup Lee. „Display of Polyhistidine Peptides on theEscherichia coli Cell Surface by Using Outer Membrane Protein C as an Anchoring Motif“. Applied and Environmental Microbiology 65, Nr. 11 (01.11.1999): 5142–47. http://dx.doi.org/10.1128/aem.65.11.5142-5147.1999.

Der volle Inhalt der Quelle
Annotation:
ABSTRACT A novel cell surface display system was developed by employingEscherichia coli outer membrane protein C (OmpC) as an anchoring motif. Polyhistidine peptides consisting of up to 162 amino acids could be successfully displayed on the seventh exposed loop of OmpC. Recombinant cells displaying polyhistidine could adsorb up to 32.0 μmol of Cd2+ per g (dry weight) of cells.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

VANGURI, Vijay K., Shuxia WANG, Svetlana GODYNA, Sripriya RANGANATHAN und Gene LIAU. „Thrombospondin-1 binds to polyhistidine with high affinity and specificity“. Biochemical Journal 347, Nr. 2 (10.04.2000): 469–73. http://dx.doi.org/10.1042/bj3470469.

Der volle Inhalt der Quelle
Annotation:
Thrombospondin-1 (TSP1) is a secreted trimeric glycoprotein of 450 kDa with demonstrated effects on cell growth, adhesion and migration. Its complex biological activity is attributed to its ability to bind to cell-surface receptors, growth factors and extracellular-matrix proteins. In this study, we used a 125I solid-phase binding assay to demonstrate that TSP1 binds specifically to proteins containing polyhistidine stretches. Based on studies with three different six-histidine-containing recombinant proteins, we derived an average dissociation constant of 5 nM. The binding of 125I-labelled TSP1 to these proteins was inhibited by peptides containing histidine residues, with the degree of competition being a function of the number of histidines within the peptide. Binding was not inhibited by excess histidine or imidazole, indicating that the imidazole ring is not sufficient for recognition by TSP1. Heparin was a potent inhibitor of binding with a Ki of 50 nM, suggesting that the heparin-binding domain of TSP1 may be involved in this interaction. This was confirmed by the ability of a recombinant heparin-binding domain of TSP1 to directly compete for TSP1 binding to polyhistidine-containing proteins. Affinity chromatography with a polyhistidine-containing peptide immobilized on agarose revealed that TSP1 in platelet releasates is the major polypeptide retained on the six-histidine-peptide column. We conclude that TSP1 contains a high-affinity binding site for polyhistidine and this is likely to be the molecular basis for the observed binding of TSP1 to histidine-rich glycoprotein. The possibility that other polyhistidine-containing proteins also interact with TSP1 warrants further study.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Putnam, David, Alexander N. Zelikin, Vladimir A. Izumrudov und Robert Langer. „Polyhistidine–PEG:DNA nanocomposites for gene delivery“. Biomaterials 24, Nr. 24 (November 2003): 4425–33. http://dx.doi.org/10.1016/s0142-9612(03)00341-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Plumptre, Charles D., Abiodun D. Ogunniyi und James C. Paton. „Polyhistidine triad proteins of pathogenic streptococci“. Trends in Microbiology 20, Nr. 10 (Oktober 2012): 485–93. http://dx.doi.org/10.1016/j.tim.2012.06.004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Mateo, Cesar, Gloria Fernandez-Lorente, Benevides C. C. Pessela, Alejandro Vian, Alfonso V. Carrascosa, Jose L. Garcia, Roberto Fernandez-Lafuente und Jose M. Guisan. „Affinity chromatography of polyhistidine tagged enzymes“. Journal of Chromatography A 915, Nr. 1-2 (April 2001): 97–106. http://dx.doi.org/10.1016/s0021-9673(01)00626-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Tsuji, Shoutaro, Taku Tanaka, Naomi Hirabayashi, Shintaro Kato, Joe Akitomi, Hazuki Egashira, Iwao Waga und Takashi Ohtsu. „RNA aptamer binding to polyhistidine-tag“. Biochemical and Biophysical Research Communications 386, Nr. 1 (August 2009): 227–31. http://dx.doi.org/10.1016/j.bbrc.2009.06.014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Efremenko, Elena, Ilya Lyagin, Yulia Votchitseva, Maria Sirotkina und Sergey Varfolomeyev. „Polyhistidine-containing organophosphorus hydrolase with outstanding properties“. Biocatalysis and Biotransformation 25, Nr. 1 (Januar 2007): 103–8. http://dx.doi.org/10.1080/10242420601141796.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Tang, Quan, Dinglei Zhao, Haiyang Yang, Lijun Wang und Xingyuan Zhang. „A pH-responsive self-healing hydrogel based on multivalent coordination of Ni2+ with polyhistidine-terminated PEG and IDA-modified oligochitosan“. Journal of Materials Chemistry B 7, Nr. 1 (2019): 30–42. http://dx.doi.org/10.1039/c8tb02360c.

Der volle Inhalt der Quelle
Annotation:
A multivalent Ni2+ coordination hydrogel based on polyhistidine-terminated PEG and IDA-modified oligochitosan with enhanced neutral stability and mild-acid responsiveness is reported herein.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Miller, Adriana, Dorota Dudek, Sławomir Potocki, Hanna Czapor-Irzabek, Henryk Kozłowski und Magdalena Rowińska-Żyrek. „Pneumococcal histidine triads – involved not only in Zn2+, but also Ni2+ binding?“ Metallomics 10, Nr. 11 (2018): 1631–37. http://dx.doi.org/10.1039/c8mt00275d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Tett, Adrian J., Steven J. Rudder, Alexandre Bourdès, Ramakrishnan Karunakaran und Philip S. Poole. „Regulatable Vectors for Environmental Gene Expression in Alphaproteobacteria“. Applied and Environmental Microbiology 78, Nr. 19 (20.07.2012): 7137–40. http://dx.doi.org/10.1128/aem.01188-12.

Der volle Inhalt der Quelle
Annotation:
ABSTRACTTwo expression vectors utilizing the inducible taurine promoter (tauAp) were developed. Plasmid pLMB51 is a stable low-copy vector enabling expression in the environment andin planta. The higher copy number pLMB509 enables BD restriction-independent cloning, expression, and purification of polyhistidine-tagged proteins.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Iwasaki, Takashi, Yoshihisa Tokuda, Ayaka Kotake, Hiroyuki Okada, Shuji Takeda, Tsuyoshi Kawano und Yuji Nakayama. „Cellular uptake and in vivo distribution of polyhistidine peptides“. Journal of Controlled Release 210 (Juli 2015): 115–24. http://dx.doi.org/10.1016/j.jconrel.2015.05.268.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Wang, Guihua, Liang Wang, Yujing Han, Shuo Zhou und Xiyun Guan. „Nanopore detection of copper ions using a polyhistidine probe“. Biosensors and Bioelectronics 53 (März 2014): 453–58. http://dx.doi.org/10.1016/j.bios.2013.10.013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Li, Zhenya, und Elliott Crooke. „Functional Analysis of Affinity-Purified Polyhistidine-Tagged DnaA Protein“. Protein Expression and Purification 17, Nr. 1 (Oktober 1999): 41–48. http://dx.doi.org/10.1006/prep.1999.1094.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Döbeli, Heinz. „Polyhistidine Affinity Chromatography: From the Idea to a Method of Broad Applicability and the Pitfalls in-between“. CHIMIA International Journal for Chemistry 74, Nr. 5 (27.05.2020): 363–67. http://dx.doi.org/10.2533/chimia.2020.363.

Der volle Inhalt der Quelle
Annotation:
The present article recapitulates the development of the polyhistidine affinity tag purification principle. Emphasis is laid on events behind the scenes which were never published. The key concept of the method emerged in a team discussion and its further development was driven by the need of Roche in-house projects.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Aryal, Baikuntha P., und David E. Benson. „Polyhistidine Fusion Proteins Can Nucleate the Growth of CdSe Nanoparticles“. Bioconjugate Chemistry 18, Nr. 2 (März 2007): 585–89. http://dx.doi.org/10.1021/bc060277+.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

VANGURI, Vijay K., Shuxia WANG, Svetlana GODYNA, Sripriya RANGANATHAN und Gene LIAU. „Thrombospondin-1 binds to polyhistidine with high affinity and specificity“. Biochemical Journal 347, Nr. 2 (15.04.2000): 469. http://dx.doi.org/10.1042/0264-6021:3470469.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Pinkerneil, Philipp, Jörn Güldenhaupt, Klaus Gerwert und Carsten Kötting. „Surface-Attached Polyhistidine-Tag Proteins Characterized by FTIR Difference Spectroscopy“. ChemPhysChem 13, Nr. 11 (15.06.2012): 2649–53. http://dx.doi.org/10.1002/cphc.201200358.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Kielkopf, Clara L., William Bauer und Ina L. Urbatsch. „Purification of Polyhistidine-Tagged Proteins by Immobilized Metal Affinity Chromatography“. Cold Spring Harbor Protocols 2020, Nr. 6 (Juni 2020): pdb.prot102194. http://dx.doi.org/10.1101/pdb.prot102194.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Iwasaki, Takashi, Nodoka Murakami und Tsuyoshi Kawano. „A polylysine–polyhistidine fusion peptide for lysosome-targeted protein delivery“. Biochemical and Biophysical Research Communications 533, Nr. 4 (Dezember 2020): 905–12. http://dx.doi.org/10.1016/j.bbrc.2020.09.087.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Waldner, Jennifer C., Steven J. Lahr, Marshall Hall Edgell und Gary J. Pielak. „Effect of a Polyhistidine Terminal Extension on Eglin c Stability“. Analytical Biochemistry 263, Nr. 1 (Oktober 1998): 116–18. http://dx.doi.org/10.1006/abio.1998.2808.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Tanaka, Yoshino, Yoshihiko Nanasato, Kousei Omura, Keita Endoh, Tsuyoshi Kawano und Takashi Iwasaki. „Direct protein delivery into intact plant cells using polyhistidine peptides“. Bioscience, Biotechnology, and Biochemistry 85, Nr. 6 (31.03.2021): 1405–14. http://dx.doi.org/10.1093/bbb/zbab055.

Der volle Inhalt der Quelle
Annotation:
ABSTRACT Polyhistidine peptides (PHPs), sequences comprising only histidine residues (>His8), are effective cell-penetrating peptides for plant cells. Using PHP-fusion proteins, we aimed to deliver proteins into cultured plant cells from Nicotiana tabacum, Oryza sativa, and Cryptomeria japonica. Co-cultivation of cultured cells with fusion proteins combining maltose-binding protein (MBP), red fluorescent protein (RFP), and various PHPs (MBP–RFP–His8–His20) in one polypeptide showed the cellular uptake of fusion proteins in all plant cell lines. Maximum intracellular fluorescence was shown in MBP-RFP-His20. Further, adenylate cyclase (CyaA), a synthase of cyclic adenosine monophosphate (cAMP) activated by cytosolic calmodulin, was used as a reporter for protein delivery in living cells. A fusion protein combining MBP, RFP, CyaA, and His20 (MBP–RFP–CyaA–His20) was delivered into plant cells and increased intracellular fluorescence and cAMP production in all cell lines. The present study demonstrates that PHPs are effective carriers of proteins into the intracellular space of various cultured plant cells.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Pavlíková, D., T. Macek, M. Macková, M. Surá, J. Száková und P. Tlustoš. „The evaluation of cadmium, zinc and nickel accumulation ability of transgenic tobacco bearing different transgenes“. Plant, Soil and Environment 50, No. 12 (10.12.2011): 513–17. http://dx.doi.org/10.17221/4067-pse.

Der volle Inhalt der Quelle
Annotation:
Tobacco, Nicotiana tabacum L., var. Wisconsin 38 as the control (WSC), and four genetically modified lines of the same variety, were tested for Cd, Zn and Ni accumulation. Genetically modified lines of the same variety, bearing the transgene CUP1 (gene coding a yeast metallothionein), GUS (reporter gene for ß-glucuronidase), HisCUP (CUP combined with a polyhistidine tail), and HisGUS (reporter gene for ß-glucuronidase, combined with a polyhistidine tail) under a constitutive promoter, enabling it to follow the heavy metal tolerance and uptake changes as a function of the transgene present. Control and transgenic lines were tested for accumulation of risk elements on sand nutrient medium with the addition of cadmium, zinc and nickel. The results showed high Cd accumulation ability of HisCUP line. The Cd content in aboveground biomass was increased by 90% compared to the non-transformed control and Cd content in roots was decreased by 49%. Determination of Zn content in aboveground biomass did not confirm higher uptake by transgenic plants significant for phytoremediation. The Ni content was significantly increased in aboveground biomass of HisGUS construct. GUS construct introduced the ability to accumulate all investigated metals; the others accumulated only one in extended amount.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Anbarasan, Sasikala, Janne Jänis, Marja Paloheimo, Mikko Laitaoja, Minna Vuolanto, Johanna Karimäki, Pirjo Vainiotalo, Matti Leisola und Ossi Turunen. „Effect of Glycosylation and Additional Domains on the Thermostability of a Family 10 Xylanase Produced by Thermopolyspora flexuosa“. Applied and Environmental Microbiology 76, Nr. 1 (23.10.2009): 356–60. http://dx.doi.org/10.1128/aem.00357-09.

Der volle Inhalt der Quelle
Annotation:
ABSTRACT The effects of different structural features on the thermostability of Thermopolyspora flexuosa xylanase XYN10A were investigated. A C-terminal carbohydrate binding module had only a slight effect, whereas a polyhistidine tag increased the thermostability of XYN10A xylanase. In contrast, glycosylation at Asn26, located in an exposed loop, decreased the thermostability of the xylanase. The presence of a substrate increased stability mainly at low pH.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Booth, William T., Caleb R. Schlachter, Swanandi Pote, Nikita Ussin, Nicholas J. Mank, Vincent Klapper, Lesa R. Offermann, Chuanbing Tang, Barry K. Hurlburt und Maksymilian Chruszcz. „Impact of an N-terminal Polyhistidine Tag on Protein Thermal Stability“. ACS Omega 3, Nr. 1 (22.01.2018): 760–68. http://dx.doi.org/10.1021/acsomega.7b01598.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Thakur, Avinash Kumar, Motahareh Ghahari Larimi, Kristin Gooden und Liviu Movileanu. „Aberrantly Large Single-Channel Conductance of Polyhistidine Arm-Containing Protein Nanopores“. Biochemistry 56, Nr. 36 (28.08.2017): 4895–905. http://dx.doi.org/10.1021/acs.biochem.7b00577.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Olin, Magnus, Jonas Carlsson und Leif Bülow. „Quantitation of Transition Metals Using Genetically Engineered Enzymes Carrying Polyhistidine Tails“. Analytical Letters 28, Nr. 7 (Mai 1995): 1159–71. http://dx.doi.org/10.1080/00032719508000335.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Carlsson, Jonas, Klaus Mosbach und Leif Bülow. „Affinity precipitation and site-specific immobilization of proteins carrying polyhistidine tails“. Biotechnology and Bioengineering 51, Nr. 2 (20.07.1996): 221–28. http://dx.doi.org/10.1002/(sici)1097-0290(19960720)51:2<221::aid-bit12>3.0.co;2-p.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

LILIUS, Gosta, Mats PERSSON, Leif BULOW und Klaus MOSBACH. „Metal affinity precipitation of proteins carrying genetically attached polyhistidine affinity tails“. European Journal of Biochemistry 198, Nr. 2 (Juni 1991): 499–504. http://dx.doi.org/10.1111/j.1432-1033.1991.tb16042.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Alessandrini, Andrea, Carlo Augusto Bortolotti, Giovanni Bertoni, Alessandro Vezzoli und Paolo Facci. „Ultraflat Nickel Substrates for Scanning Probe Microscopy of Polyhistidine-Tagged Proteins“. Journal of Physical Chemistry C 112, Nr. 10 (März 2008): 3747–50. http://dx.doi.org/10.1021/jp0771623.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Wątły, Joanna, Aleksandra Hecel, Magdalena Rowińska-Żyrek und Henryk Kozłowski. „Impact of histidine spacing on modified polyhistidine tag – Metal ion interactions“. Inorganica Chimica Acta 472 (März 2018): 119–26. http://dx.doi.org/10.1016/j.ica.2017.06.053.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Hayashi, Taiki, Matsumi Shinagawa, Tsuyoshi Kawano und Takashi Iwasaki. „Drug delivery using polyhistidine peptide-modified liposomes that target endogenous lysosome“. Biochemical and Biophysical Research Communications 501, Nr. 3 (Juni 2018): 648–53. http://dx.doi.org/10.1016/j.bbrc.2018.05.037.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Torres-González, Lisa, Ramonita Díaz-Ayala, Carmen Vega-Olivencia und Juan López-Garriga. „Characterization of Recombinant His-Tag Protein Immobilized onto Functionalized Gold Nanoparticles“. Sensors 18, Nr. 12 (04.12.2018): 4262. http://dx.doi.org/10.3390/s18124262.

Der volle Inhalt der Quelle
Annotation:
The recombinant polyhistidine-tagged hemoglobin I ((His)6-rHbI) from the bivalve Lucina pectinata is an ideal biocomponent for a hydrogen sulfide (H2S) biosensor due to its high affinity for H2S. In this work, we immobilized (His)6-rHbI over a surface modified with gold nanoparticles functionalized with 3-mercaptopropionic acid complexed with nickel ion. The attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) analysis of the modified-gold electrode displays amide I and amide II bands characteristic of a primarily α-helix structure verifying the presence of (His)6-rHbI on the electrode surface. Also, X-ray photoelectron spectroscopy (XPS) results show a new peak after protein interaction corresponding to nitrogen and a calculated overlayer thickness of 5.3 nm. The functionality of the immobilized hemoprotein was established by direct current potential amperometry, using H2S as the analyte, validating its activity after immobilization. The current response to H2S concentrations was monitored over time giving a linear relationship from 30 to 700 nM with a corresponding sensitivity of 3.22 × 10−3 nA/nM. These results confirm that the analyzed gold nanostructured platform provides an efficient and strong link for polyhistidine-tag protein immobilization over gold and glassy carbon surfaces for a future biosensors development.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Kaeswurm, Julia A. H., Bettina Nestl, Sven M. Richter, Max Emperle und Maria Buchweitz. „Purification and Characterization of Recombinant Expressed Apple Allergen Mal d 1“. Methods and Protocols 4, Nr. 1 (27.12.2020): 3. http://dx.doi.org/10.3390/mps4010003.

Der volle Inhalt der Quelle
Annotation:
Mal d 1 is the primary apple allergen in northern Europe. To explain the differences in the allergenicity of apple varieties, it is essential to study its properties and interaction with other phytochemicals, which might modulate the allergenic potential. Therefore, an optimized production route followed by an unsophisticated purification step for Mal d 1 and respective mutants is desired to produce sufficient amounts. We describe a procedure for the transformation of the plasmid in competent E. coli cells, protein expression and rapid one-step purification. r-Mal d 1 with and without a polyhistidine-tag are purified by immobilized metal ion affinity chromatography (IMAC) and fast-protein liquid chromatography (FPLC) using a high-resolution anion-exchange column, respectively. Purity is estimated by SDS-PAGE using an image-processing program (Fiji). For both mutants an appropriate yield of r-Mal d 1 with purity higher than 85% is achieved. The allergen is characterized after tryptic in gel digestion by peptide analyses using HPLC-MS/MS. Secondary structure elements are calculated based on CD-spectroscopy and the negligible impact of the polyhistidine-tag on the folding is confirmed. The formation of dimers is proved by mass spectrometry and reduction by DTT prior to SDS-PAGE. Furthermore, the impact of the freeze and thawing process, freeze drying and storage on dimer formation is investigated.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Lee, Chang-Won, Yeon-Gil Choi, Amer Alam und Jae-Sung Woo. „Rapid purification of HRV3C and TEV proteases using polyhistidine and polylysine tags“. Korean Society for Structural Biology 8, Nr. 2 (30.06.2020): 49–53. http://dx.doi.org/10.34184/kssb.2020.8.2.49.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Mohanty, Arun K., und Michael C. Wiener. „Membrane protein expression and production: effects of polyhistidine tag length and position“. Protein Expression and Purification 33, Nr. 2 (Februar 2004): 311–25. http://dx.doi.org/10.1016/j.pep.2003.10.010.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Hwang, Seon-Kap, Peter R. Salamone, Halil Kavakli, Casey J. Slattery und Thomas W. Okita. „Rapid purification of the potato ADP–glucose pyrophosphorylase by polyhistidine-mediated chromatography“. Protein Expression and Purification 38, Nr. 1 (November 2004): 99–107. http://dx.doi.org/10.1016/j.pep.2004.07.018.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Rodrı́guez-Dı́az, Jesús, Pilar López-Andújar, Ana Garcı́a-Dı́az, Javier Cuenca, Rebeca Montava und Javier Buesa. „Expression and purification of polyhistidine-tagged rotavirus NSP4 proteins in insect cells“. Protein Expression and Purification 31, Nr. 2 (Oktober 2003): 207–12. http://dx.doi.org/10.1016/s1046-5928(03)00166-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Liu, Jia-Wei, Ting Yang, Lin-Yu Ma, Xu-Wei Chen und Jian-Hua Wang. „Nickel nanoparticle decorated graphene for highly selective isolation of polyhistidine-tagged proteins“. Nanotechnology 24, Nr. 50 (22.11.2013): 505704. http://dx.doi.org/10.1088/0957-4484/24/50/505704.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Vargová, Veronika, Marko Zivanović, Vlastimil Dorčák, Emil Paleček und Veronika Ostatná. „Catalysis of Hydrogen Evolution by Polylysine, Polyarginine and Polyhistidine at Mercury Electrodes“. Electroanalysis 25, Nr. 9 (26.07.2013): 2130–35. http://dx.doi.org/10.1002/elan.201300170.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Plumptre, Charles D., Abiodun D. Ogunniyi und James C. Paton. „Vaccination against Streptococcus pneumoniae Using Truncated Derivatives of Polyhistidine Triad Protein D“. PLoS ONE 8, Nr. 10 (31.10.2013): e78916. http://dx.doi.org/10.1371/journal.pone.0078916.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Krishnani, Kishore K., Wilfred Chen und Ashok Mulchandani. „Bactericidal activity of elastin-like polypeptide biopolymer with polyhistidine domain and silver“. Colloids and Surfaces B: Biointerfaces 119 (Juli 2014): 66–70. http://dx.doi.org/10.1016/j.colsurfb.2014.03.018.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Brown, L�cia Y., Susan E. Hodge, William G. Johnson, Sandra G. Guy, Jeffrey S. Nye und Stephen Brown. „Possible association of NTDs with a polyhistidine tract polymorphism in theZIC2 gene“. American Journal of Medical Genetics 108, Nr. 2 (14.02.2002): 128–31. http://dx.doi.org/10.1002/ajmg.10221.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Dalmasso, Pablo R., María L. Pedano und Gustavo A. Rivas. „Dispersion of multi-wall carbon nanotubes in polyhistidine: Characterization and analytical applications“. Analytica Chimica Acta 710 (Januar 2012): 58–64. http://dx.doi.org/10.1016/j.aca.2011.10.050.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Pedersen, John, Conni Lauritzen, Mads Thorup Madsen und Søren Weis Dahl. „Removal of N-Terminal Polyhistidine Tags from Recombinant Proteins Using Engineered Aminopeptidases“. Protein Expression and Purification 15, Nr. 3 (April 1999): 389–400. http://dx.doi.org/10.1006/prep.1999.1038.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Qiu, Gao-Feng, Hai-Yang Feng und Keisuke Yamano. „Expression and Purification of Active Recombinant Cathepsin C (Dipeptidyl Aminopeptidase I) of Kuruma PrawnMarsupenaeus japonicusin Insect Cells“. Journal of Biomedicine and Biotechnology 2009 (2009): 1–6. http://dx.doi.org/10.1155/2009/746289.

Der volle Inhalt der Quelle
Annotation:
Cathepsin C (CTSC) is a lysosomal cysteine protease belonging to the papain superfamily. Our previous study showed that CTSC precursor (zymogen) is localized exclusively in cortical rods (CRs) of mature oocyte in the kuruma prawnMarsupenaeus japonicus, suggesting that CTSC might have roles on regulating release and/or formation of a jelly layer. In this study, enzymically active CTSC of the kuruma prawn was prepared by recombinant expression in the High Five insect cell line. The recombinant enzyme with a polyhistidine tag at its C-terminus was considered to be initially secreted into the culture medium as an inactive form of zymogen, because Western blot with anti-CTSC antibody detected a 51 kDa protein corresponding to CTSC precursor. After purification by affinity chromatography on nickel-iminodiacetic acid resin, the enzyme displayed three forms of 51, 31, and 30 kDa polypeptides. All of the forms can be recognized by antiserum raised against C-terminal polyhistidine tag, indicating that the 31 and 30 kDa forms were generated from 51 kDa polypeptide by removal of a portion of the N-terminus of propeptide. Following activation at pH 5.5 and37∘Cfor 40 hours under native conditions, the recombinant CTSC (rCTSC) exhibited increased activity against the synthetic substrate Gly-Phe-β-naphthylamide and optimal pH at around 5. The purified rCTSC will be useful for further characterization of its exact physiological role on CRs release and/or formation of a jelly layer in kuruma prawn.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Dabrowski, S., und J. Kur. „Recombinant His-tagged DNA polymerase. II. Cloning and purification of Thermus aquaticus recombinant DNA polymerase (Stoffel fragment).“ Acta Biochimica Polonica 45, Nr. 3 (30.09.1998): 661–67. http://dx.doi.org/10.18388/abp.1998_4204.

Der volle Inhalt der Quelle
Annotation:
The Stoffel DNA fragment, shortened by 12 bp from 5' end, coding for Stoffel DNA polymerase (missing 4 amino acids at N-terminus of Stoffel amino-acids sequence) from the thermophilic Thermus aquaticus (strain YT-1) was amplified, cloned and expressed in Escherichia coli. The recombinant Stoffel fragment contained a polyhistidine tag at the N-terminus (21 additional amino acids) that allowed its single-step isolation by Ni2+ affinity chromatography. The enzyme was characterized and displayed high DNA polymerase activity and thermostability evidently higher than the native Taq DNA polymerase.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Waqas, Muhammad, Huyen Trang Trinh, Sungeun Lee, Dae-hwan Kim, Sang Yeol Lee, Kevin K. Choe und Chongsuk Ryou. „Decrease of protease-resistant PrPSc level in ScN2a cells by polyornithine and polyhistidine“. Journal of Microbiology and Biotechnology 28, Nr. 12 (28.12.2018): 2141–44. http://dx.doi.org/10.4014/jmb.1807.07045.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Shi, Jianxia, Jing Man Wong, Ji Ma, Tiffany Dickerson, Colin Hall, Dan A. Rock und Timothy J. Carlson. „Reagent-free LC–MS/MS-based pharmacokinetic quantification of polyhistidine-tagged therapeutic proteins“. Bioanalysis 9, Nr. 3 (Februar 2017): 251–64. http://dx.doi.org/10.4155/bio-2016-0126.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Giusti, Fabrice, Pascal Kessler, Randi Westh Hansen, Eduardo A. Della Pia, Christel Le Bon, Gilles Mourier, Jean-Luc Popot, Karen L. Martinez und Manuela Zoonens. „Synthesis of a Polyhistidine-bearing Amphipol and its Use for Immobilizing Membrane Proteins“. Biomacromolecules 16, Nr. 12 (05.11.2015): 3751–61. http://dx.doi.org/10.1021/acs.biomac.5b01010.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie