Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Polyetherketoneketone“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Polyetherketoneketone" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Polyetherketoneketone"
Cho, Mi-Hyang, und Byung-Wook Jeon. „Color change of polyetherketoneketone by layering step“. Korean Journal of Dental Materials 44, Nr. 4 (30.12.2017): 395–404. http://dx.doi.org/10.14815/kjdm.2017.44.4.395.
Der volle Inhalt der QuelleOzyilmaz, Ozgun Yusuf, und Ceyda Akin. „Effect of cleansers on denture base resins’ structural properties“. Journal of Applied Biomaterials & Functional Materials 17, Nr. 1 (Januar 2019): 228080001982779. http://dx.doi.org/10.1177/2280800019827797.
Der volle Inhalt der QuelleConverse, Gabriel L., Timothy L. Conrad, Christina H. Merrill und Ryan K. Roeder. „Hydroxyapatite whisker-reinforced polyetherketoneketone bone ingrowth scaffolds“. Acta Biomaterialia 6, Nr. 3 (März 2010): 856–63. http://dx.doi.org/10.1016/j.actbio.2009.08.004.
Der volle Inhalt der QuelleKim, Hyunyoung, Jonghyuk Lee, Sung-Hoon Lee und Dongheon Baek. „Polishing characteristics of polyetherketoneketone on Candida albicans adhesion“. Journal of Korean Academy of Prosthodontics 58, Nr. 3 (2020): 207. http://dx.doi.org/10.4047/jkap.2020.58.3.207.
Der volle Inhalt der QuelleKewekordes, T., S. Wille und M. Kern. „Wear of polyetherketoneketone (PEKK) caused by different antagonists“. Dental Materials 30 (2014): e77. http://dx.doi.org/10.1016/j.dental.2014.08.156.
Der volle Inhalt der QuelleKABBARA, Maya, Ryan HAROUNY und Habib RAHME. „Investigation of fracture resistance with different diameters of polyetherketoneketone posts and cores material: A pilot study“. International Arab Journal of Dentistry 15, Nr. 2 (01.11.2024): 36–45. http://dx.doi.org/10.70174/iajd.v15i2.1031.
Der volle Inhalt der QuelleZhang, Xiao-Hua, Meng-Xiao Jiao, Xin Wang, Bo-Lan Li, Feng Zhang, Yan-Bo Li, Jing-Na Zhao, He-Hua Jin und Yu Yang. „Preheat Compression Molding for Polyetherketoneketone: Effect of Molecular Mobility“. Chinese Journal of Polymer Science 40, Nr. 2 (20.11.2021): 175–84. http://dx.doi.org/10.1007/s10118-021-2649-1.
Der volle Inhalt der QuelleYuan, Bo, Linnan Wang, Rui Zhao, Xi Yang, Xiao Yang, Xiangdong Zhu, Limin Liu, Kai Zhang, Yueming Song und Xingdong Zhang. „A biomimetically hierarchical polyetherketoneketone scaffold for osteoporotic bone repair“. Science Advances 6, Nr. 50 (Dezember 2020): eabc4704. http://dx.doi.org/10.1126/sciadv.abc4704.
Der volle Inhalt der QuelleConverse, Gabriel L., Timothy L. Conrad und Ryan K. Roeder. „Mechanical properties of hydroxyapatite whisker reinforced polyetherketoneketone composite scaffolds“. Journal of the Mechanical Behavior of Biomedical Materials 2, Nr. 6 (Dezember 2009): 627–35. http://dx.doi.org/10.1016/j.jmbbm.2009.07.002.
Der volle Inhalt der QuelleCoulson, Mike, Eric Dantras, Philippe Olivier, Nathalie Gleizes und Colette Lacabanne. „Thermal conductivity and diffusivity of carbon‐reinforced polyetherketoneketone composites“. Journal of Applied Polymer Science 136, Nr. 38 (18.05.2019): 47975. http://dx.doi.org/10.1002/app.47975.
Der volle Inhalt der QuelleDissertationen zum Thema "Polyetherketoneketone"
Alsadon, Omar. „Evaluating PolyEtherKetoneKetone (PEKK) polymer used for fabricating fixed prosthodontics“. Thesis, University of Sheffield, 2017. http://etheses.whiterose.ac.uk/17181/.
Der volle Inhalt der QuelleMatus-Aguirre, Marcela. „Soudage laser par transmission de thermoplastique semi-cristallin PEKK : prédiction de la cristallinité du joint de soudure et de la résistance mécanique des assemblages“. Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSEP116.
Der volle Inhalt der QuelleThermoplastic materials are gaining popularity in the aerospace industry as alternatives to metals and thermosets, providing benefits such as fast manufacturing, repairability, and recyclability. Their ability to soften and melt allows them to be welded without needing to incorporate external components. Additionally, high-performance thermoplastics exhibit resistance to harsh environments, such as high temperatures and various chemicals, making them ideal for high-demanding applications. These features make thermoplastics suitable for applications in which weight reduction, performance, and durability are essential. Laser transmission welding (LTW) has emerged as an effective technique for welding thermoplastics due to its simplicity, precision, and ability to produce high-quality joints. In LTW, a laser beam passes through a semi-transparent upper part and is absorbed by a lower absorbent sample, generating heat at the interface to assemble the parts. The LTW process relies on the thermo-chemical and optical properties of the materials to be welded. Careful consideration is needed when laser welding semi-crystalline thermoplastics, like polyaryletherketones (PAEK). Polyetherketoneketone (PEKK) has received less attention than PEEK in laser welding. However, PEKK is a more promising material for LTW due to its unique crystallization properties compared to PEEK. The crystallization kinetics of PEKK can be modified, which provides better control of its crystallinity by manipulating processing parameters. This PhD thesis investigates the laser transmission welding process of PEKK, focusing on the influence of material properties and process parameters on the weld joint morphology and mechanical properties. The overlapping configuration consists of a quasi-amorphous semi-transparent PEKK sample over a highly crystallized opaque PEKK one (PEKK-A/SC). Thermo-physical and optical properties of the PEKK samples are characterized to ensure their suitability for LTW. Then, process parameters for LTW, such as laser power and thickness of the upper part, are systematically studied to understand their impact on weld joint properties. After welding, some assemblies are annealed at the cold crystallization temperature of PEKK to enhance joint quality. The quality of the weld joints is assessed by mechanical tests and microscopic observations. Single lap-shear tests are employed to identify the failure type and mechanical strength of assemblies. Microscopy is used to analyze failure zones and the weld joint morphology on the cross-section along the welding path. A numerical simulation of the LTW process of PEKK parts was developed in MatLab using the finite differences method, incorporating heat transfer and the crystallization kinetics of PEKK. This model provided insights into the thermal history of the samples during welding and predicted the evolution of weld joint crystallinity as a function of welding parameters. The developed simulations offer insights into the complex thermal and crystallization behaviors observed during LTW of PEKK parts. Furthermore, after studying and validating the LTW process for PEKK polymer, this thesis extends the LTW study to PEKK composites reinforced with short carbon fibers (PEKK-CF). To enable LTW of PEKK-CF samples, the quasi-amorphous PEKK is used as the upper part for the overlapping configuration. That represents a novel area of research, with no prior studies found on LTW of PEKK-CF composites. The welding of PEKK-CF samples is optimized through experimental trials, and the weld joint quality is evaluated under varying laser intensities and the thickness of the upper part. The findings from this thesis contribute to a deeper understanding of the LTW process for PEKK and its composites, providing valuable guidelines for optimizing welding parameters and improving joint strength in industrial applications
Buchteile zum Thema "Polyetherketoneketone"
Gooch, Jan W. „Polyetherketoneketone“. In Encyclopedic Dictionary of Polymers, 559. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_9061.
Der volle Inhalt der Quelle„Polyetherketoneketone“. In Encyclopedic Dictionary of Polymers, 749. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-30160-0_8910.
Der volle Inhalt der QuelleWypych, George. „PEKK polyetherketoneketone“. In Handbook of Polymers, 367–69. Elsevier, 2012. http://dx.doi.org/10.1016/b978-1-895198-47-8.50111-9.
Der volle Inhalt der QuelleWypych, George. „PEKK polyetherketoneketone“. In Handbook of Polymers, 380–82. Elsevier, 2016. http://dx.doi.org/10.1016/b978-1-895198-92-8.50117-8.
Der volle Inhalt der QuelleGe, Jia, Wei Tan, Giuseppe Catalanotti, Brian G. Falzon, John McClelland, Colm Higgins, Yan Jin und Dan Sun. „Understanding Chip Formation in Orthogonal Cutting of Aeronautical Thermoplastic CF/PEKK Composites Based on Finite Element Method“. In Advances in Transdisciplinary Engineering. IOS Press, 2022. http://dx.doi.org/10.3233/atde220584.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Polyetherketoneketone"
Reber III, Roderick, Brian Koo und David Liu. „Polyetherketoneketone (PEKK), a Versatile Ultra-polymer for Additive Manufacturing“. In SAMPE 2019 - Charlotte, NC. SAMPE, 2019. http://dx.doi.org/10.33599/nasampe/s.19.1596.
Der volle Inhalt der QuelleCobb, Greg, Travis E. Shelton, Carl Hartsfield und Ryan Kemnitz. „Effects of Carbon Nanotube Filler on Mechanical and Electrical Properties of Fused Filament Fabricated Polyetherketoneketone“. In AIAA Scitech 2021 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2021. http://dx.doi.org/10.2514/6.2021-0168.
Der volle Inhalt der QuellePOLNIKORN, Purith. „Basic characterization of the CF-PEKK prepreg and laminates for low temperature applications“. In Material Forming. Materials Research Forum LLC, 2024. http://dx.doi.org/10.21741/9781644903131-45.
Der volle Inhalt der QuelleMATUS AGUIRRE, M. „Laser transmission welding of PEKK: Influence of material properties and process parameters on the weld strength“. In Material Forming. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902479-198.
Der volle Inhalt der QuelleMARTINEZ, JIMENA, TIMOTHY YAP und MEHRAN TEHRANI. „EFFECTS OF EXTRUSION RATE AND POST-ANNEALING ON MECHANICAL PROPERTIES AND PRINTING QUALITY OF ADDITIVELY MANUFACTURED CARBON FIBER REINFORCED POLYETHERKETONEKETONE (PEEK) PARTS“. In Proceedings for the American Society for Composites-Thirty Seventh Technical Conference. Destech Publications, Inc., 2022. http://dx.doi.org/10.12783/asc37/36423.
Der volle Inhalt der QuelleKaminskyj, M. S., M. S. Schwenger, D. A. Brennan, F. M. Haas und Joseph F. Stanzione. „Effects of Polymer Crystallinity on Deposition Efficiency and Porosity in Cold Spray of PEKK“. In ITSC2022. DVS Media GmbH, 2022. http://dx.doi.org/10.31399/asm.cp.itsc2022p0082.
Der volle Inhalt der QuelleSTARK, WALTER, NADIA HANNON, TIMOTHY YAP, NATHANIEL HEATHMAN und MEHRAN TEHRANI. „HEATED ADDITIVELY MANUFACTURED MOLDS FOR THERMOPLASTIC COMPOSITE AUTOMATED FIBER PLACEMENT“. In Proceedings for the American Society for Composites-Thirty Seventh Technical Conference. Destech Publications, Inc., 2022. http://dx.doi.org/10.12783/asc37/36469.
Der volle Inhalt der QuelleWYNN, MATHEW, KUAN-TING CHEN und NAVID ZOBEIRY. „CHARACTERIZING THERMAL DEGRADATION IN SEMI-CRYSTALLINE THERMOPLASTIC COMPOSITES“. In Proceedings for the American Society for Composites-Thirty Eighth Technical Conference. Destech Publications, Inc., 2023. http://dx.doi.org/10.12783/asc38/36599.
Der volle Inhalt der Quelle