Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Polydentate ligands.

Zeitschriftenartikel zum Thema „Polydentate ligands“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Polydentate ligands" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Bukov, N. N., und V. T. Panyushkin. „AMBIDENTICITY OF POLYDENTATE LIGANDS“. Science in the South of Russia 14, Nr. 1 (2018): 51–58. http://dx.doi.org/10.23885/2500-0640-2018-14-1-51-58.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Senft, Laura, Jamonica L. Moore, Alicja Franke, Katherine R. Fisher, Andreas Scheitler, Achim Zahl, Ralph Puchta et al. „Quinol-containing ligands enable high superoxide dismutase activity by modulating coordination number, charge, oxidation states and stability of manganese complexes throughout redox cycling“. Chemical Science 12, Nr. 31 (2021): 10483–500. http://dx.doi.org/10.1039/d1sc02465e.

Der volle Inhalt der Quelle
Annotation:
Manganese complexes with polydentate quinol-containing ligands are found to catalyze the degradation of superoxide through inner-sphere mechanisms. The redox activity of the ligand stabilizes higher-valent manganese species.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Rheingold, Arnold L., Brian S. Haggerty, Louise M. Liable-Sands und Swiatoslaw Trofimenko. „N,O-Polydentate Scorpionate Ligands“. Inorganic Chemistry 38, Nr. 26 (Dezember 1999): 6306–8. http://dx.doi.org/10.1021/ic990881e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Burton, Stephanie G., Perry T. Kay und Kevin Wellington. „Designer Ligands. Part 5.1Synthesis of Polydentate Biphenyl Ligands“. Synthetic Communications 30, Nr. 3 (Februar 2000): 511–22. http://dx.doi.org/10.1080/00397910008087347.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Volpi, Giorgio, Stefano Zago, Roberto Rabezzana, Eliano Diana, Emanuele Priola, Claudio Garino und Roberto Gobetto. „N-Based Polydentate Ligands and Corresponding Zn(II) Complexes: A Structural and Spectroscopic Study“. Inorganics 11, Nr. 11 (10.11.2023): 435. http://dx.doi.org/10.3390/inorganics11110435.

Der volle Inhalt der Quelle
Annotation:
Herein, the structural and photophysical features of two N-based polydentate ligands and the corresponding Zn(II) complexes are investigated. The obtained compounds were characterized using different spectroscopic techniques and their optical properties are discussed in relation to their chemical structure, defined by single-crystal X-ray diffraction and mass spectrometry. The spontaneous and quantitative complexation, investigated by UV-Vis, fluorescence, NMR, IR spectroscopies and mass spectrometry, makes these N-based polydentate ligands interesting candidates for possible applications in chelation therapy and in Zn(II) sensors.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Ure, Andrew D., Isabel Abánades Lázaro, Michelle Cotter und Aidan R. McDonald. „Synthesis and characterisation of a mesocyclic tripodal triamine ligand“. Organic & Biomolecular Chemistry 14, Nr. 2 (2016): 483–94. http://dx.doi.org/10.1039/c5ob01556a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Shopov, Dimitar Y., Liam S. Sharninghausen, Shashi Bhushan Sinha, Julia E. Borowski, Brandon Q. Mercado, Gary W. Brudvig und Robert H. Crabtree. „Synthesis of pyridine-alkoxide ligands for formation of polynuclear complexes“. New Journal of Chemistry 41, Nr. 14 (2017): 6709–19. http://dx.doi.org/10.1039/c7nj01845b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Coxall, Robert A., Steven G. Harris, David K. Henderson, Simon Parsons, Peter A. Tasker und Richard E. P. Winpenny. „Inter-ligand reactions: in situ formation of new polydentate ligands“. Journal of the Chemical Society, Dalton Transactions, Nr. 14 (2000): 2349–56. http://dx.doi.org/10.1039/b001404o.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Ruan, Wenqing, Jiatao Mao, Shida Yang, Chuan Shi, Guochen Jia und Qing Chen. „Designing Cr complexes for a neutral Fe–Cr redox flow battery“. Chemical Communications 56, Nr. 21 (2020): 3171–74. http://dx.doi.org/10.1039/c9cc09704j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Matyuska, Ferenc, Attila Szorcsik, Nóra V. May, Ágnes Dancs, Éva Kováts, Attila Bényei und Tamás Gajda. „Tailoring the local environment around metal ions: a solution chemical and structural study of some multidentate tripodal ligands“. Dalton Transactions 46, Nr. 26 (2017): 8626–42. http://dx.doi.org/10.1039/c7dt00104e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Neumajer, Gábor, Gergő Tóth, Szabolcs Béni und Béla Noszál. „Novel ion-binding C3 symmetric tripodal triazoles: synthesis and characterization“. Open Chemistry 12, Nr. 1 (01.01.2014): 115–25. http://dx.doi.org/10.2478/s11532-013-0351-z.

Der volle Inhalt der Quelle
Annotation:
AbstractNovel C3 symmetric tripodal molecules were synthesized from cyclohexane 1,3,5-tricarboxylic acid. Utilizing click and Sonogashira reactions, ion-binding triazole and pyridazin-3(2H)-one units were incorporated to form polydentate ligands for ion complexation. The structures of the novel C3 symmetric derivatives were extensively characterized by 1H, 13C and 2D NMR techniques along with HRMS and IR. The copper(I)-binding potentials of these ligands were investigated by using them as additives in model copper(I)-catalysed azide-alkyne cycloaddition (CuAAC) reactions. The copper(I) complexation ability of our compound was also proved by different spectroscopic methods, such as mass spectrometry, UV and NMR spectroscopy. Based on the mass spectrometric data all of the C3 symmetric ligands formed 1:1 complex with copper(I) ion. The specific role of C3 symmetric polydentate form in the complexation process was also discussed
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Kaye, Perry T., und Kevin W. Wellington. „DESIGNER LIGANDS. VI. SYNTHESIS OF 1,10-PHENANTHROLINE-BASED POLYDENTATE LIGANDS“. Synthetic Communications 31, Nr. 6 (Januar 2001): 799–804. http://dx.doi.org/10.1081/scc-100103312.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Șalgău, Cătălin, Andrea Dobri und Anca Silvestru. „New mercury(II) complexes of polydentate ligands“. Studia Universitatis Babeș-Bolyai Chemia 66, Nr. 3 (30.09.2021): 175–85. http://dx.doi.org/10.24193/subbchem.2021.3.10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Fedulin, Andrey I., Yurii F. Oprunenko, Sergey S. Karlov, Galina S. Zaitseva und Kirill V. Zaitsev. „Tetrylenes based on polydentate sulfur-containing ligands“. Mendeleev Communications 31, Nr. 6 (November 2021): 850–52. http://dx.doi.org/10.1016/j.mencom.2021.11.027.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Asirvatham, S., M. A. Khan und K. M. Nicholas. „A Decairon Cluster Devoid of Polydentate Ligands“. Inorganic Chemistry 39, Nr. 9 (Mai 2000): 2006–7. http://dx.doi.org/10.1021/ic9911668.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Solache-Rios, Marcos, und Alfred G. Maddock. „Some complexes of protactinium with polydentate ligands“. Journal of the Less Common Metals 122 (August 1986): 347–51. http://dx.doi.org/10.1016/0022-5088(86)90430-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Fern�ndez, Eva, Ar�nzazu L�pez de la Calle und Mar�a J. Gonz�lez Garmendia. „Oxovanadium(IV) complexes with polydentate nitrogen ligands“. Transition Metal Chemistry 12, Nr. 6 (Dezember 1987): 536–38. http://dx.doi.org/10.1007/bf01023843.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Wang, Le, Yong Ye, Shang Bin Zhong und Yu Fen Zhao. „Polydentate cyclotriphosphazene ligands: Design, synthesis and bioactivity“. Chinese Chemical Letters 20, Nr. 1 (Januar 2009): 58–61. http://dx.doi.org/10.1016/j.cclet.2008.10.020.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Burlov, A. S., V. G. Vlasenko, D. A. Garnovskii, A. I. Uraev, Yu V. Koshchienko, E. I. Mal’tsev, D. A. Lypenko und A. V. Dmitriev. „Luminescent Metal Complexes of Polydentate Azomethine Ligands“. Russian Journal of Coordination Chemistry 49, S1 (Dezember 2023): S49—S67. http://dx.doi.org/10.1134/s1070328423600845.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Barroso, Raquel, María-Paz Cabal, Azucena Jiménez und Carlos Valdés. „Cascade and multicomponent synthesis of structurally diverse 2-(pyrazol-3-yl)pyridines and polysubstituted pyrazoles“. Organic & Biomolecular Chemistry 18, Nr. 8 (2020): 1629–36. http://dx.doi.org/10.1039/c9ob02691f.

Der volle Inhalt der Quelle
Annotation:
A wide diversity of polyheterocyclic systems including polysubstituted pyrazoles and pyridopyrazole polydentate ligands are readily assembled through cascade multicomponent processes from terminal alkynes and N-tosylhydrazones.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Levason, William, und Gillian Reid. „Early Transition Metal Complexes of Polydentate and Macrocyclic Thio- and Seleno-Ethers“. Journal of Chemical Research 2002, Nr. 10 (Oktober 2002): 467–72. http://dx.doi.org/10.3184/030823402103170501.

Der volle Inhalt der Quelle
Annotation:
Recent work on the syntheses, structures and properties of complexes of polydentate and macrocyclic thio- and seleno-ether ligands with Groups 3-6 metals in positive oxidation states (≥3) is described.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Ma, Yanan, Xiaoping Yang, Zhiyin Xiao, Xiaoming Liu, Dongliang Shi, Mengyu Niu und Desmond Schipper. „One high-nuclearity Eu18 nanoring with rapid ratiometric fluorescence response to dipicolinic acid (an anthrax biomarker)“. Chemical Communications 57, Nr. 59 (2021): 7316–19. http://dx.doi.org/10.1039/d1cc01706c.

Der volle Inhalt der Quelle
Annotation:
One 18-metal Eu(iii) nanoring was constructed by using two types of polydentate organic ligands, and it shows a rapid ratiometric fluorescence response to 2,6-dipicolinic acid with high sensitivity and selectivity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Munshi, Sandip, Rahul Dev Jana und Tapan Kanti Paine. „Oxidative degradation of toxic organic pollutants by water soluble nonheme iron(iv)-oxo complexes of polydentate nitrogen donor ligands“. Dalton Transactions 50, Nr. 16 (2021): 5590–97. http://dx.doi.org/10.1039/d0dt04421k.

Der volle Inhalt der Quelle
Annotation:
A series of water soluble iron(ii) complexes of polydentate nitrogen donor ligands are reported to perform the oxidative degradation of polyhalogenated phenols and persistent organic pollutants using ceric ammonium nitrate as the oxidant.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Xiong, Rulin, Likun Cheng, Yu Tian, Weijun Tang, Kehan Xu, Yuan Yuan und Aiguo Hu. „Hyperbranched polyethylenimine based polyamine-N-oxide-carboxylate chelates of gadolinium for high relaxivity MRI contrast agents“. RSC Advances 6, Nr. 33 (2016): 28063–68. http://dx.doi.org/10.1039/c6ra03589b.

Der volle Inhalt der Quelle
Annotation:
Polydentate amine-N-oxide carboxylates were used as ligands for the formation of Gd(iii) complexes with high relaxivity as MRI contrast agents. Cytotoxicity assays revealed good cytocompatibility of these complexes for clinical applications.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Burton, Stephanie G., Perry T. Kaye und Kevin Wellington. „ChemInform Abstract: Designer Ligands. Part 5. Synthesis of Polydentate Biphenyl Ligands.“ ChemInform 31, Nr. 24 (08.06.2010): no. http://dx.doi.org/10.1002/chin.200024160.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Fu, Hongru, Yuying Jiang, Fei Wang und Jian Zhang. „The Synthesis and Properties of TIPA-Dominated Porous Metal-Organic Frameworks“. Nanomaterials 11, Nr. 11 (21.10.2021): 2791. http://dx.doi.org/10.3390/nano11112791.

Der volle Inhalt der Quelle
Annotation:
Metal-Organic Frameworks (MOFs) as a class of crystalline materials are constructed using metal nodes and organic spacers. Polydentate N-donor ligands play a mainstay-type role in the construction of metal−organic frameworks, especially cationic MOFs. Highly stable cationic MOFs with high porosity and open channels exhibit distinct advantages, they can act as a powerful ion exchange platform for the capture of toxic heavy-metal oxoanions through a Single-Crystal to Single-Crystal (SC-SC) pattern. Porous luminescent MOFs can act as nano-sized containers to encapsulate guest emitters and construct multi-emitter materials for chemical sensing. This feature article reviews the synthesis and application of porous Metal-Organic Frameworks based on tridentate ligand tris (4-(1H-imidazol-1-yl) phenyl) amine (TIPA) and focuses on design strategies for the synthesis of TIPA-dominated Metal-Organic Frameworks with high porosity and stability. The design strategies are integrated into four types: small organic molecule as auxiliaries, inorganic oxyanion as auxiliaries, small organic molecule as secondary linkers, and metal clusters as nodes. The applications of ratiometric sensing, the adsorption of oxyanions contaminants from water, and small molecule gas storage are summarized. We hope to provide experience and inspiration in the design and construction of highly porous MOFs base on polydentate N-donor ligands.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Saraswathi, Mandapati, und Jack M. Miller. „Study of formation and fragmentation of ionic complexes of polydentate ligands with Al(III) and glycerol by fast atom bombardment mass spectrometry. Part 1: Polydentate ligands“. Canadian Journal of Chemistry 74, Nr. 11 (01.11.1996): 2221–28. http://dx.doi.org/10.1139/v96-250.

Der volle Inhalt der Quelle
Annotation:
The complexation reactions of aluminum ions with polydentate ligands such as 12-crown-4,15-crown-5,18-crown-6, 1,10-dithia-18-crown-6, dicyclohexyl-18-crown-6, dibenzo-18-crown-6, and dibenzo-24-crown-8 and acyclic analogs mono-, di-, tri-, tetra-, penta-, and hexaethylene glycols were studied using FAB mass spectrometry. These cyclic ligands form (M + 117)+, (M + 157)+, (M + 231)+, and (M + 253)+ ions with different aluminum-containing species. Collisionally activated dissociations of these adduct ions gave fragment ions, initially due to the loss of ligands directly attached to aluminum, followed by insertion of aluminum into the remaining ligand skeleton. Further fragmentation of the metal-containing species gave ions corresponding to consecutive losses of C2H4O units. Fragmentations of deuterium-labelled ions were used to help in establishing fragmentation pathways. Selectivity towards metal chelation is observed in this order: 12-crown-4 < 15-crown-5 < 18-crown-6. The elemental compositions of adduct ions were confirmed by high-resolution measurements. The formation of (M + Al − 2H)+ ion, obtained by the displacement of two hydroxy protons, is more favored for tetra- and pentaethylene glycols. Key words: crown ethers, polyethylene glycols, aluminum(III)–glycerol, ionic complexes and ion dissociations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

БЕЛОБЕЛЕЦКАЯ, М. В., Н. И. СТЕБЛЕВСКАЯ und М. А. МЕДКОВ. „Complex formation of REEs with polydentate organic ligands“. Вестник ДВО РАН, Nr. 6(214) (24.12.2020): 7–16. http://dx.doi.org/10.37102/08697698.2020.214.6.001.

Der volle Inhalt der Quelle
Annotation:
Исследовано комплексообразование европия и тербия с полифункциональными органическими соединениями – β-дикетонами, органическими кислотами. Состав комплексов изучен экстракционным методом, ИК и люминесцентной спектроскопией. Установлено, что при экстракции РЗЭ смешанными экстрагентами идет эффективное комплексообразование РЗЭ в органической фазе. Показана возможность синтеза из насыщенных экстрактов разнолигандных координационных соединений РЗЭ, выделены индивидуальные кристаллические комплексы. The complex formation of europium and terbium with polyfunctional organic compounds: β-diketones, organic acids were investigated. The composition of the complexes was studied by extractive method, infrared and luminescent spectroscopy. It was established that during the extraction of REE by mixed extractants there is an effective complex formation of REE in the organic phase. The possibility of synthesis of different ligand coordination compounds of REE from saturated extracts was shown and individual crystalline complexes were isolated.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Marchenko, Anatoliy, Georgyi Koidan, Anastasiya Hurieva, Viktoriya V. Dyakonenko, Svitlana V. Shishkina, Eduard B. Rusanov, Andrii A. Kyrylchuk und Aleksandr Kostyuk. „Polydentate Phosphane Ligands Featuring N , N , N’ ‐Trialkylformamidines“. European Journal of Inorganic Chemistry 2021, Nr. 10 (12.02.2021): 969–81. http://dx.doi.org/10.1002/ejic.202001059.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Todorova, Stanislava, Vanya Kurteva, Boris Shivachev und Rositsa P. Nikolova. „Crystal structures of novel polydentate N,O-ligands“. Acta Crystallographica Section A Foundations and Advances 72, a1 (28.08.2016): s403. http://dx.doi.org/10.1107/s2053273316094110.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Berthet, Jean-Claude, Jérôme Maynadié, Pierre Thuéry und Michel Ephritikhine. „Linear uranium metallocenes with polydentate aromatic nitrogen ligands“. Dalton Transactions 39, Nr. 29 (2010): 6801. http://dx.doi.org/10.1039/c002279a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

McRobbie, Andrew, Asad R. Sarwar, Steven Yeninas, Harriott Nowell, Michael L. Baker, David Allan, Marshall Luban et al. „Chromium chains as polydentate fluoride ligands for lanthanides“. Chemical Communications 47, Nr. 22 (2011): 6251. http://dx.doi.org/10.1039/c1cc11516b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Wilson, C., S. Dahaoui, D. S. Yufit, J. A. K. Howard und L. K. Thompson. „Experimental Charge Density Studies of Polydentate Diazine Ligands“. Acta Crystallographica Section A Foundations of Crystallography 56, s1 (25.08.2000): s187. http://dx.doi.org/10.1107/s0108767300024181.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Johnson, Carl R., und Tsuneo Imamoto. „Synthesis of polydentate ligands with homochiral phosphine centers“. Journal of Organic Chemistry 52, Nr. 11 (Mai 1987): 2170–74. http://dx.doi.org/10.1021/jo00387a010.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Choppin, Gregory R. „Complexation kinetics of f-elements and polydentate ligands“. Journal of Alloys and Compounds 225, Nr. 1-2 (Juli 1995): 242–45. http://dx.doi.org/10.1016/0925-8388(94)07068-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Esteban, M. F. Gargallo, R. Vilaplana Serrano und F. González Vilchez. „Synthesis and vibrational study of some polydentate ligands“. Spectrochimica Acta Part A: Molecular Spectroscopy 43, Nr. 8 (Januar 1987): 1039–43. http://dx.doi.org/10.1016/0584-8539(87)80176-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Smit, Biljana, Radoslav Pavlovic, Ana Radosavljevic-Mihailovic, Anja Dosen, Milena Curcic, Dragana Seklic und Marko Zivanovic. „Synthesis, characterization and cytotoxicity of palladium(II) complex of 3-[(2-hydroxy-benzylidene)-amino]-2-thioxo-imidazolidin-4-one“. Journal of the Serbian Chemical Society 78, Nr. 2 (2013): 217–27. http://dx.doi.org/10.2298/jsc120725154s.

Der volle Inhalt der Quelle
Annotation:
The polydentate ligand, 3-[(2-hydroxy-benzylidene)-amino]-2-thioxo-imidazolidin-4-one, was synthesized by intermolecular cyclocondensation reaction of 2-hydroxybenzaldehyde thiosemicarbazone and ethylchloroacetate. Novel palladium(II) complex was obtained by nucleophilic substitution of both DMSO ligands from cis-[Pd(DMSO)2Cl2] with iminic nitrogen and thiolactamic sulfur from ligand. The structure of compounds was characterized on the basis of their spectral data. The cytotoxic activity of the ligand and palladium(II) complex was studied on tumor cell lines: human colon carcinoma HCT-116 and SW-480 cells using MTT viability test. The results show that investigated palladium(II) complex has significantly greater cytotoxic effect compared to ligand.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Reger, Daniel L., Terri D. Wright und Mark D. Smith. „Mixed-ligand complexes of cadmium(II) containing bulky polydentate nitrogen-based ligands“. Inorganica Chimica Acta 334 (Mai 2002): 1–9. http://dx.doi.org/10.1016/s0020-1693(02)00735-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

McDonald, Cecelia, David W. Williams, Priyanka Comar, Simon J. Coles, Tony D. Keene, Mateusz B. Pitak, Euan K. Brechin und Leigh F. Jones. „Molecular Pac-Man and Tacos: layered Cu(ii) cages from ligands with high binding site concentrations“. Dalton Transactions 44, Nr. 29 (2015): 13359–68. http://dx.doi.org/10.1039/c5dt01463h.

Der volle Inhalt der Quelle
Annotation:
Sheet Metal: The deliberate in situ Schiff base condensation of two organic subunits (hydroxamic acid and phenolic aldehyde) leads to polydentate ligands capable of forming large Cu(ii) cages of nuclearities ranging from [Cu10] to [Cu30].
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Bogdanova, Irina, Dmitriy Andreev, Boris Skulin, Valentina Grabel'nyh, Nina Sosnovskaya und Nikolay Korchevin. „THE USE OF POLYDENTATE CHALCOGEN-CONTAINING LIGANDS IN THE TECHNOLOGY OF BRILLIANT NICKEL PLATING“. Modern Technologies and Scientific and Technological Progress 1, Nr. 1 (17.05.2021): 17–18. http://dx.doi.org/10.36629/2686-9896-2021-1-1-17-18.

Der volle Inhalt der Quelle
Annotation:
. Neutral chalcogen-containing polydentate compounds were used for the first time to obtain shiny nickel coatings from Watts electrolyte. The main technological parameters of electrolysis that ensure the production of the highest quality coatings are identified.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Raptopoulou, Catherine P. „Heterometallic Complexes Containing the NiII-LnIII-NiII Moiety—Structures and Magnetic Properties“. Crystals 10, Nr. 12 (08.12.2020): 1117. http://dx.doi.org/10.3390/cryst10121117.

Der volle Inhalt der Quelle
Annotation:
This review summarizes the structural characteristics and magnetic properties of trinuclear complexes containing the NiII-LnIII-NiII moiety and also oligonuclear complexes and coordination polymers containing the same trinuclear moiety. The ligands used are mainly polydentate Schiff base ligands and reduced Schiff base ligands and, in some cases, oximato, β-diketonato, pyridyl ketone ligands and others. The compounds reported are restricted to those containing one, two and three oxygen atoms as bridges between the metal ions; examples of carboxylato and oximato bridging are also included due to structural similarity. The magnetic properties of the complexes range from ferro- to antiferromagnetic depending on the nature of the lanthanide ion.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Ali, Shoaib, Viswanathan Baskar, Christopher A. Muryn und Richard E. P. Winpenny. „Mixed antimonate-phosphonate ligands as polydentate bridging oxygen donors“. Chemical Communications, Nr. 47 (2008): 6375. http://dx.doi.org/10.1039/b815270e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Raptopoulou, Catherine P., Yiannis Sanakis, Vassilis Psycharis und Michael Pissas. „Zig-zag [MnIII4] clusters from polydentate Schiff base ligands“. Polyhedron 64 (November 2013): 181–88. http://dx.doi.org/10.1016/j.poly.2013.03.055.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Chantler, James, Phillip E. Fanwick und Richard A. Walton. „Dirhenium(II) complexes containing monodentate and polydentate nitrile ligands“. Inorganica Chimica Acta 305, Nr. 2 (Juli 2000): 215–20. http://dx.doi.org/10.1016/s0020-1693(00)00127-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Addison, Anthony W., und Curtis G. Wahlgren. „Some iron(III) complexes with polydentate Schiff base ligands“. Inorganica Chimica Acta 147, Nr. 1 (Juli 1988): 61–64. http://dx.doi.org/10.1016/s0020-1693(00)80630-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Sharutin, Vladimir V., Olga K. Sharutina, Yulia O. Gubanova und Oleg S. Eltsov. „Dihydroxybenzoic acids as polydentate ligands in phenylantimony (V) complexes“. Inorganica Chimica Acta 494 (August 2019): 211–15. http://dx.doi.org/10.1016/j.ica.2019.05.029.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Abel, Edward W., David G. Evans, Julian R. Koe, Michael B. Hursthouse und Mohammed Mazid. „Dimethylplatinum complexes of polydentate alkene–sulfur and –selenium ligands“. J. Chem. Soc., Dalton Trans., Nr. 4 (1992): 663–67. http://dx.doi.org/10.1039/dt9920000663.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Petrosyants, S. P. „ChemInform Abstract: Gallium Complexes with Mono- and Polydentate Ligands.“ ChemInform 33, Nr. 27 (21.05.2010): no. http://dx.doi.org/10.1002/chin.200227271.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Browne, Julian M. W., Jan Wikaira, Christopher M. Fitchett und Richard M. Hartshorn. „Polydentate ligand construction: intramolecular condensation reactions in the synthesis of imine-containing ligands“. Journal of the Chemical Society, Dalton Transactions, Nr. 10 (2002): 2227. http://dx.doi.org/10.1039/b111556a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Kaye, Perry T., und Kevin W. Wellington. „ChemInform Abstract: Designer Ligands. Part 6. Synthesis of 1,10-Phenanthroline-Based Polydentate Ligands.“ ChemInform 32, Nr. 35 (24.05.2010): no. http://dx.doi.org/10.1002/chin.200135151.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie