Zeitschriftenartikel zum Thema „Polycomb machinery“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-46 Zeitschriftenartikel für die Forschung zum Thema "Polycomb machinery" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Chen, Xin, Mark Hiller, Yasemin Sancak und Margaret T. Fuller. „Tissue-Specific TAFs Counteract Polycomb to Turn on Terminal Differentiation“. Science 310, Nr. 5749 (03.11.2005): 869–72. http://dx.doi.org/10.1126/science.1118101.
Der volle Inhalt der QuelleCruz-Becerra, Grisel, Mandy Juárez, Viviana Valadez-Graham und Mario Zurita. „Analysis of Drosophila p8 and p52 mutants reveals distinct roles for the maintenance of TFIIH stability and male germ cell differentiation“. Open Biology 6, Nr. 10 (Oktober 2016): 160222. http://dx.doi.org/10.1098/rsob.160222.
Der volle Inhalt der QuelleKuehner und Yao. „The Dynamic Partnership of Polycomb and Trithorax in Brain Development and Diseases“. Epigenomes 3, Nr. 3 (21.08.2019): 17. http://dx.doi.org/10.3390/epigenomes3030017.
Der volle Inhalt der QuelleFlora, Pooja, Gil Dalal, Idan Cohen und Elena Ezhkova. „Polycomb Repressive Complex(es) and Their Role in Adult Stem Cells“. Genes 12, Nr. 10 (24.09.2021): 1485. http://dx.doi.org/10.3390/genes12101485.
Der volle Inhalt der QuelleChiacchiera, Fulvio, und Diego Pasini. „Control of adult intestinal identity by the Polycomb repressive machinery“. Cell Cycle 16, Nr. 3 (28.11.2016): 243–44. http://dx.doi.org/10.1080/15384101.2016.1252582.
Der volle Inhalt der QuelleBreiling, Achim, Edgar Bonte, Simona Ferrari, Peter B. Becker und Renato Paro. „The Drosophila Polycomb Protein Interacts with Nucleosomal Core Particles In Vitro via Its Repression Domain“. Molecular and Cellular Biology 19, Nr. 12 (01.12.1999): 8451–60. http://dx.doi.org/10.1128/mcb.19.12.8451.
Der volle Inhalt der QuelleKaundal, Babita, Anup K. Srivastava, Mohammed Nadim Sardoiwala, Surajit Karmakar und Subhasree Roy Choudhury. „A NIR-responsive indocyanine green-genistein nanoformulation to control the polycomb epigenetic machinery for the efficient combinatorial photo/chemotherapy of glioblastoma“. Nanoscale Advances 1, Nr. 6 (2019): 2188–207. http://dx.doi.org/10.1039/c9na00212j.
Der volle Inhalt der QuelleLuo, Xi, Kelly Schoch, Sharayu V. Jangam, Venkata Hemanjani Bhavana, Hillary K. Graves, Sujay Kansagra, Joan M. Jasien et al. „Rare deleterious de novo missense variants in Rnf2/Ring2 are associated with a neurodevelopmental disorder with unique clinical features“. Human Molecular Genetics 30, Nr. 14 (16.04.2021): 1283–92. http://dx.doi.org/10.1093/hmg/ddab110.
Der volle Inhalt der QuelleLeicher, Rachel, Eva J. Ge, Xingcheng Lin, Matthew J. Reynolds, Wenjun Xie, Thomas Walz, Bin Zhang, Tom W. Muir und Shixin Liu. „Single-molecule and in silico dissection of the interaction between Polycomb repressive complex 2 and chromatin“. Proceedings of the National Academy of Sciences 117, Nr. 48 (18.11.2020): 30465–75. http://dx.doi.org/10.1073/pnas.2003395117.
Der volle Inhalt der QuelleLee, Patrick C., Phuong Le, Keegan Korthauer, Jingwei Cheng, John Doench, James A. DeCaprio, Derin B. Keskin und Catherine J. Wu. „Identifying regulators of reversible MHC I loss in Merkel cell carcinoma through genome-scale screens“. Journal of Immunology 204, Nr. 1_Supplement (01.05.2020): 243.18. http://dx.doi.org/10.4049/jimmunol.204.supp.243.18.
Der volle Inhalt der QuelleRouleau, M., D. McDonald, P. Gagné, M. E. Ouellet, A. Droit, J. M. Hunter, S. Dutertre, C. Prigent, M. J. Hendzel und G. G. Poirier. „PARP-3 associates with polycomb group bodies and with components of the DNA damage repair machinery“. Journal of Cellular Biochemistry 100, Nr. 2 (01.02.2007): 385–401. http://dx.doi.org/10.1002/jcb.21051.
Der volle Inhalt der QuelleGarrick, David, Marco De Gobbi, Vasiliki Samara, Michelle Rugless, Michelle Holland, Helena Ayyub, Karen Lower et al. „The role of the polycomb complex in silencing α-globin gene expression in nonerythroid cells“. Blood 112, Nr. 9 (01.11.2008): 3889–99. http://dx.doi.org/10.1182/blood-2008-06-161901.
Der volle Inhalt der QuelleBirve, Anna, Aditya K. Sengupta, Dirk Beuchle, Jan Larsson, James A. Kennison, Åsa Rasmuson-Lestander und Jürg Müller. „Su(z)12, a novelDrosophilaPolycomb group gene that is conserved in vertebrates and plants“. Development 128, Nr. 17 (01.09.2001): 3371–79. http://dx.doi.org/10.1242/dev.128.17.3371.
Der volle Inhalt der QuelleShen, Qingwen, Yisheng Lin, Yingbo Li und Guifeng Wang. „Dynamics of H3K27me3 Modification on Plant Adaptation to Environmental Cues“. Plants 10, Nr. 6 (08.06.2021): 1165. http://dx.doi.org/10.3390/plants10061165.
Der volle Inhalt der QuelleKing, Ian F. G., Nicole J. Francis und Robert E. Kingston. „Native and Recombinant Polycomb Group Complexes Establish a Selective Block to Template Accessibility To Repress Transcription In Vitro“. Molecular and Cellular Biology 22, Nr. 22 (15.11.2002): 7919–28. http://dx.doi.org/10.1128/mcb.22.22.7919-7928.2002.
Der volle Inhalt der QuelleTagore, Mohita, Michael J. McAndrew, Alison Gjidoda und Monique Floer. „The Lineage-Specific Transcription Factor PU.1 Prevents Polycomb-Mediated Heterochromatin Formation at Macrophage-Specific Genes“. Molecular and Cellular Biology 35, Nr. 15 (26.05.2015): 2610–25. http://dx.doi.org/10.1128/mcb.00027-15.
Der volle Inhalt der QuelleInfante, Teresa, Francesco P. Mancini, Alessandro Lanza, Andrea Soricelli, Filomena de Nigris und Claudio Napoli. „Polycomb YY1 is a critical interface between epigenetic code and miRNA machinery after exposure to hypoxia in malignancy“. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1853, Nr. 5 (Mai 2015): 975–86. http://dx.doi.org/10.1016/j.bbamcr.2015.01.009.
Der volle Inhalt der QuelleHanly, David J., Manel Esteller und María Berdasco. „Interplay between long non-coding RNAs and epigenetic machinery: emerging targets in cancer?“ Philosophical Transactions of the Royal Society B: Biological Sciences 373, Nr. 1748 (23.04.2018): 20170074. http://dx.doi.org/10.1098/rstb.2017.0074.
Der volle Inhalt der QuelleTan, Jiaying, und Jay L. Hess. „CBX8, a Polycomb-Group Protein, Is Essential for MLL-AF9-Induced Leukemogenesis“. Blood 116, Nr. 21 (19.11.2010): 4174. http://dx.doi.org/10.1182/blood.v116.21.4174.4174.
Der volle Inhalt der QuelleGillespie, Robert F., und Lorraine J. Gudas. „Retinoic Acid Receptor Isotype Specificity in F9 Teratocarcinoma Stem Cells Results from the Differential Recruitment of Coregulators to Retinoic Acid Response Elements“. Journal of Biological Chemistry 282, Nr. 46 (17.09.2007): 33421–34. http://dx.doi.org/10.1074/jbc.m704845200.
Der volle Inhalt der QuellePrice, Colles, Ping Chen, Shenglai Li, Zejuan Li, Yuanyuan Li, Xi Jiang, Hao Huang et al. „Polycomb Group Member Rybp Is a Functional Tumor Suppressor Repressed By Mir-9 in MLL-Rearranged AML“. Blood 124, Nr. 21 (06.12.2014): 871. http://dx.doi.org/10.1182/blood.v124.21.871.871.
Der volle Inhalt der QuelleXu, Jian, Zhen Shao, Dan Li, Huafeng Xie, Woojin Kim, Jialiang Huang, Luca Pinello, Kimberly Glass, Guo-Cheng Yuan und Stuart H. Orkin. „Developmental Control of Polycomb Subunit Composition Mediates a Switch to Non-Canonical Functions during Hematopoiesis“. Blood 124, Nr. 21 (06.12.2014): 241. http://dx.doi.org/10.1182/blood.v124.21.241.241.
Der volle Inhalt der QuelleAkkouche, Abdou, Sara Moodad, Rita Hleihel, Hala Skayneh, Séverine Chambeyron, Hiba El Hajj und Ali Bazarbachi. „In vivo antagonistic role of the Human T-Cell Leukemia Virus Type 1 regulatory proteins Tax and HBZ“. PLOS Pathogens 17, Nr. 1 (20.01.2021): e1009219. http://dx.doi.org/10.1371/journal.ppat.1009219.
Der volle Inhalt der QuelleGurvich, Nadia, Francesca Voza, Silvia Menendez und Stephen Nimer. „Loss of L3MBTL1, a Candidate 20q12 Tumor Suppressor Gene, Leads to DNA Damage.“ Blood 114, Nr. 22 (20.11.2009): 1974. http://dx.doi.org/10.1182/blood.v114.22.1974.1974.
Der volle Inhalt der QuelleJiao, Lianying, Murtada Shubbar, Xin Yang, Qi Zhang, Siming Chen, Qiong Wu, Zhe Chen, Josep Rizo und Xin Liu. „A partially disordered region connects gene repression and activation functions of EZH2“. Proceedings of the National Academy of Sciences 117, Nr. 29 (06.07.2020): 16992–7002. http://dx.doi.org/10.1073/pnas.1914866117.
Der volle Inhalt der QuelleSchnerch, Angelique, Jung Bok Lee, Monica Graham, Borhane Guezguez und Mickie Bhatia. „Human Embryonic Stem Cell-Derived Hematopoietic Cells Maintain Core Epigenetic Machinery of the Polycomb Group/Trithorax Group Complexes Distinctly from Functional Adult Hematopoietic Stem Cells“. Stem Cells and Development 22, Nr. 1 (Januar 2013): 73–89. http://dx.doi.org/10.1089/scd.2012.0204.
Der volle Inhalt der QuelleMatilla, Angel J. „Exploring Breakthroughs in Three Traits Belonging to Seed Life“. Plants 11, Nr. 4 (11.02.2022): 490. http://dx.doi.org/10.3390/plants11040490.
Der volle Inhalt der QuelleNtziachristos, Panagiotis, Aristotelis Tsirigos, Grant Welstead, Thomas Trimarchi, Linda Holmfeldt, Takashi Satoh, Elisabeth M. Paietta et al. „An Oncogene-Regulated Epigenetic Switch in T Cell Acute Lymphoblastic Leukemia“. Blood 124, Nr. 21 (06.12.2014): 56. http://dx.doi.org/10.1182/blood.v124.21.56.56.
Der volle Inhalt der QuelleAriës, Ingrid, Triona Ni Chonghaile, Salmaan Karim, Mina Jacob, Kristen E. Stevenson, Donna S. Neuberg, Meenakshi Devidas et al. „PRC2 Mutations Induce Resistance to Conventional Chemotherapy By Inhibiting Mitochondrial Apoptosis in T-Cell Acute Lymphoblastic Leukemia“. Blood 128, Nr. 22 (02.12.2016): 604. http://dx.doi.org/10.1182/blood.v128.22.604.604.
Der volle Inhalt der QuelleYamagishi, Makoto, Harutaka Katano, Tsunekazu Hishima, Yasunori Ota, Seiji Okada und Toshiki Watanabe. „Epigenetically Programmed Defenseless Signaling in Malignant Lymphoma“. Blood 126, Nr. 23 (03.12.2015): 1230. http://dx.doi.org/10.1182/blood.v126.23.1230.1230.
Der volle Inhalt der QuellePapaemmanuil, Elli. „Somatic Mutations in Myelodysplastic Syndrome“. Blood 124, Nr. 21 (06.12.2014): SCI—22—SCI—22. http://dx.doi.org/10.1182/blood.v124.21.sci-22.sci-22.
Der volle Inhalt der QuelleChung, Jihyun, Vrajesh Karkhanis, Sif Said und Robert A. Baiocchi. „Protein Arginine Methyltransferase 5 Regulates WNT/β-Catenin Target Gene Expression in at Multiple Levels“. Blood 128, Nr. 22 (02.12.2016): 4106. http://dx.doi.org/10.1182/blood.v128.22.4106.4106.
Der volle Inhalt der QuelleLee, Miyoung, Aleksandra Filipovic und Curtis J. Henry. „Combinatorial Inhibition of Galectin-9 and CHK1 Represent a Novel Treatment Strategy for T-Cell Acute Lymphoblastic Leukemia“. Blood 138, Supplement 1 (05.11.2021): 4400. http://dx.doi.org/10.1182/blood-2021-154404.
Der volle Inhalt der QuelleSahasrabuddhe, Anagh A., Xiaofei Chen, Thirunavukkarasu Velusamy, Fuzon Chung, Megan S. Lim und Kojo S. J. Elenitoba-Johnson. „A Novel Non-Canonical Phosphodegron Regulates EZH2 Proteasomal Degradation and H3K27 Trimethylation Activity in Hematopoietic Malignancies“. Blood 124, Nr. 21 (06.12.2014): 1678. http://dx.doi.org/10.1182/blood.v124.21.1678.1678.
Der volle Inhalt der QuelleShinde, Sneha, Azim M. Mohamedali und Ghulam Mufti. „Mutation and Expression Analysis of Jumonji Genes in Myelodysplastic Syndrome & Acute Myeloid Leukaemia“. Blood 124, Nr. 21 (06.12.2014): 3555. http://dx.doi.org/10.1182/blood.v124.21.3555.3555.
Der volle Inhalt der Quellevan Dijk, Anneke D., Fieke W. Hoff, Yihua Qiu, Mary Figueroa, Joya Chandra, Elias Jabbour, Eveline S. de Bont und Steven M. Kornblau. „Trimethylated H3K27, and Di- and Trimethylated H3K4 Proteomic Profiling Distinguishes Acute Lymphoid Leukemia (ALL) from Acute Myeloid Leukemia (AML) and Associates with Overall Survival and Tyrosine Kinase Inhibitor Sensitivity in Adult ALL“. Blood 134, Supplement_1 (13.11.2019): 1460. http://dx.doi.org/10.1182/blood-2019-124960.
Der volle Inhalt der QuelleDanishuddin, Vikas Kumar, Shraddha Parate, Ashutosh Bahuguna, Gihwan Lee, Myeong Ok Kim und Keun Woo Lee. „Development of Machine Learning Models for Accurately Predicting and Ranking the Activity of Lead Molecules to Inhibit PRC2 Dependent Cancer“. Pharmaceuticals 14, Nr. 7 (20.07.2021): 699. http://dx.doi.org/10.3390/ph14070699.
Der volle Inhalt der QuelleNetanely, Dvir, Stephen Lam, Anna McGuire, Stephen Deppen, Eric Grogan, Fabien Maldonado, Michael Gieske et al. „Abstract 5434: Machine-learning-based epigenetic detection of early-stage lung cancers using the EpiCheck liquid biopsy platform“. Cancer Research 83, Nr. 7_Supplement (04.04.2023): 5434. http://dx.doi.org/10.1158/1538-7445.am2023-5434.
Der volle Inhalt der QuelleWang, Gang, Heng Ye, Xuchao Wang und Binbin Liu. „Polycomb repressive complex 2 controls cardiac cell fate decision via interacting with RNA: Promiscuously or well-ordered“. Frontiers in Genetics 13 (14.10.2022). http://dx.doi.org/10.3389/fgene.2022.1011228.
Der volle Inhalt der QuelleYin, Xiaochang, Francisco J. Romero-Campero, Minqi Yang, Fernando Baile, Yuxin Cao, Jiayue Shu, Lingxiao Luo et al. „Binding by the Polycomb complex component BMI1 and H2A monoubiquitination shape local and long-range interactions in the Arabidopsis genome“. Plant Cell, 18.04.2023. http://dx.doi.org/10.1093/plcell/koad112.
Der volle Inhalt der QuelleDjeghloul, Dounia, Andrew Dimond, Sherry Cheriyamkunnel, Holger Kramer, Bhavik Patel, Karen Brown, Alex Montoya et al. „Loss of H3K9 trimethylation alters chromosome compaction and transcription factor retention during mitosis“. Nature Structural & Molecular Biology, 20.03.2023. http://dx.doi.org/10.1038/s41594-023-00943-7.
Der volle Inhalt der QuelleLiu, Xiuli, und Xin Liu. „PRC2, Chromatin Regulation, and Human Disease: Insights From Molecular Structure and Function“. Frontiers in Oncology 12 (21.06.2022). http://dx.doi.org/10.3389/fonc.2022.894585.
Der volle Inhalt der QuelleKong, Isabella Y., Stephanie Trezise, Amanda Light, Izabela Todorovski, Gisela Mir Arnau, Sreeja Gadipally, David Yoannidis et al. „Epigenetic modulators of B cell fate identified through coupled phenotype-transcriptome analysis“. Cell Death & Differentiation, 13.07.2022. http://dx.doi.org/10.1038/s41418-022-01037-5.
Der volle Inhalt der QuelleZhang, Pingxian, Chunmei Zhu, Yuke Geng, Yifan Wang, Ying Yang, Qing Liu, Weijun Guo et al. „Rice and Arabidopsis homologs of yeast CHROMOSOME TRANSMISSION FIDELITY PROTEIN 4 commonly interact with Polycomb complexes but exert divergent regulatory functions“. Plant Cell, 06.02.2021. http://dx.doi.org/10.1093/plcell/koab047.
Der volle Inhalt der QuelleLee, Youngsook, Eunjin Cho und Matthew Mysliwiec. „Abstract 118: Epigenetic Regulation of Ventricular Development“. Circulation Research 115, suppl_1 (18.07.2014). http://dx.doi.org/10.1161/res.115.suppl_1.118.
Der volle Inhalt der QuelleMohan, Dipika R., Isabella Finco, Christopher Ryan LaPensee, Juilee Rege, Tobias Else, Madson Q. Almeida, Michelle Vinco et al. „SAT-LB34 Repressive Epigenetic Programs Reinforce Steroidogenic Differentiation and Wnt/β-Catenin Signaling in Aggressive Adrenocortical Carcinoma“. Journal of the Endocrine Society 4, Supplement_1 (April 2020). http://dx.doi.org/10.1210/jendso/bvaa046.2265.
Der volle Inhalt der Quelle