Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Polyamide 11 (PA11)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Polyamide 11 (PA11)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Polyamide 11 (PA11)"
Bahrami, Mohsen, Juana Abenojar und Miguel Angel Martínez. „Comparative Characterization of Hot-Pressed Polyamide 11 and 12: Mechanical, Thermal and Durability Properties“. Polymers 13, Nr. 20 (15.10.2021): 3553. http://dx.doi.org/10.3390/polym13203553.
Der volle Inhalt der QuelleLao, S. C., J. H. Koo, T. J. Moon, M. Londa, C. C. Ibeh, G. E. Wissler und L. A. Pilato. „Flame-retardant polyamide 11 nanocomposites: further thermal and flammability studies“. Journal of Fire Sciences 29, Nr. 6 (22.06.2011): 479–98. http://dx.doi.org/10.1177/0734904111404658.
Der volle Inhalt der QuelleKhan, Zahid Iqbal, Zurina Binti Mohamad, Abdul Razak Bin Rahmat, Unsia Habib und Nur Amira Sahirah Binti Abdullah. „A novel recycled polyethylene terephthalate/polyamide 11 (rPET/PA11) thermoplastic blend“. Progress in Rubber, Plastics and Recycling Technology 37, Nr. 3 (15.03.2021): 233–44. http://dx.doi.org/10.1177/14777606211001074.
Der volle Inhalt der QuelleWang, Sheng Qin, Mohit Sharma und Yew Wei Leong. „Polyamide 11/Clay Nanocomposite Using Polyhedral Oligomeric Silsesquioxane Surfactants“. Advanced Materials Research 1110 (Juni 2015): 65–68. http://dx.doi.org/10.4028/www.scientific.net/amr.1110.65.
Der volle Inhalt der QuelleLods, Louise, Tutea Richmond, Jany Dandurand, Eric Dantras, Colette Lacabanne, Jean-Michel Durand, Edouard Sherwood, Gilles Hochstetter und Philippe Ponteins. „Continuous Bamboo Fibers/Fire-Retardant Polyamide 11: Dynamic Mechanical Behavior of the Biobased Composite“. Polymers 14, Nr. 2 (12.01.2022): 299. http://dx.doi.org/10.3390/polym14020299.
Der volle Inhalt der QuelleGunputh, Urvashi F., Gavin Williams, Marzena Pawlik, Yiling Lu und Paul Wood. „Effect of Powder Bed Fusion Laser Sintering on Dimensional Accuracy and Tensile Properties of Reused Polyamide 11“. Polymers 15, Nr. 23 (02.12.2023): 4602. http://dx.doi.org/10.3390/polym15234602.
Der volle Inhalt der QuelleOulmou, F., A. Benhamida, A. Dorigato, A. Sola, M. Messori und A. Pegoretti. „Effect of expandable and expanded graphites on the thermo-mechanical properties of polyamide 11“. Journal of Elastomers & Plastics 51, Nr. 2 (18.06.2018): 175–90. http://dx.doi.org/10.1177/0095244318781956.
Der volle Inhalt der QuelleLi, Yongjin, Yuko Iwakura und Hiroshi Shimizu. „Crystal Form and Phase Structure of Poly(vinylidene fluoride)/Polyamide 11/Clay Nanocomposites by High-Shear Processing“. Journal of Nanoscience and Nanotechnology 8, Nr. 4 (01.04.2008): 1714–20. http://dx.doi.org/10.1166/jnn.2008.18235.
Der volle Inhalt der QuelleSahnoune, Mohamed, Mustapha Kaci, Aurélie Taguet, Karl Delbé, Samir Mouffok, Said Abdi, José-Marie Lopez-Cuesta und Walter W. Focke. „Tribological and mechanical properties of polyamide-11/halloysite nanotube nanocomposites“. Journal of Polymer Engineering 39, Nr. 1 (19.12.2018): 25–34. http://dx.doi.org/10.1515/polyeng-2018-0131.
Der volle Inhalt der QuelleTey, Wei Shian, Chao Cai und Kun Zhou. „A Comprehensive Investigation on 3D Printing of Polyamide 11 and Thermoplastic Polyurethane via Multi Jet Fusion“. Polymers 13, Nr. 13 (29.06.2021): 2139. http://dx.doi.org/10.3390/polym13132139.
Der volle Inhalt der QuelleDissertationen zum Thema "Polyamide 11 (PA11)"
Landreau, Emmanuel. „Matériaux issus de ressources renouvelables. Mélanges amidon plastifié/PA11 compatibilisés“. Reims, 2008. http://theses.univ-reims.fr/exl-doc/GED00000801.pdf.
Der volle Inhalt der QuelleTo develop renewable resources based material, plasticized starch were blend with polyamide 11, a bio-based polymer from castor oil, to improve its mechanical properties and water resistance. Through the high polarity of the amide group, the blends need a compatibilizer to be efficient. The different molecules tested are polysaccharides with anionic groups known to interact with polyamide: sodium alginate, carraghenan and sodium carboxymethylcellulose. Tests runs in blender show that only sodium carboxymethylcellulose (CMC) can improve blend tensile properties. Optimization of the plasticizer, the compatibilizer level and the blend process lead to a mainly starch based material (70%) with a high tensile strength (15 MPa) and elongation at break (130%) with only 1% of CMC. These materials were blends in a twin screw extruder to be studied. SEM, solvent extraction, rheology and electrical resistance mesurment show a continuous PA phase up to 80% of starch. The polysaccharide has a mainly nodular morphology with a partial percolation around 30% starch. Isolated nodules co-exist with a co-continous structure up very high starch content. CMC reduce interfacial tension and nodule size preventing their coalescence. Compostability test on blends, show that starch mineralization is complete whatever its concentration is, but PA remain resistant to biodegradation
Le, Cras Guillaume. „Ιmpact sur les prοpriétés barrière de matériaux biοsοurcés multicοuches. Relatiοns mise en οeuvre-mοrphοlοgie-prοpriétés“. Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMR094.
Der volle Inhalt der QuelleThe aim of this thesis project is to design multilayer films based on biobased polymers by using multilayer coextrusion, with the aim of both improving barrier properties to small molecules and mechanical properties. The choice of the two polymers, those are polyamide 11 (PA11) and polylactic acid (PLA), is based on their complementary properties. Higher melting and crystallization temperatures of PA11 makes him the polymer confining PLA, which induces a confinement effect into multilayer films. The study therefore focuses on the elaboration of multilayer films from some grades of PLA, in order to better understand the effect of PLA crystalline structure on film performances. Post-treatment by annealing and stretching is applied to films in order to increase the degree of crystallinity and modify the crystalline orientation of PLA to optimize barrier properties. The thesis project also explores the feasibility of a PLA/PLA multilayer film to determine the effect of confinement in a single-component system. Finally, the impact of incorporating natural additives into PA11/PLA multilayer films is being investigated in order to improve functional properties and provide specific characteristics such as antibacterial or antioxidant properties
Buchteile zum Thema "Polyamide 11 (PA11)"
Bashford, David. „Polyamide 11 (PA11)“. In Thermoplastics, 290–92. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-009-1531-2_49.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Polyamide 11 (PA11)"
Sperry, McKay, Annie Busath, Michael Ottesen, Jacob Heslington und Nathan Crane. „Post-Processing and Material Properties of Nylon 12 Prepared by Laser-Powder Bed Fusion“. In ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-69053.
Der volle Inhalt der Quelle