Zeitschriftenartikel zum Thema „Poly(sodium 2-Acrylamido-2-Methylpropane sulfonate“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Poly(sodium 2-Acrylamido-2-Methylpropane sulfonate.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Poly(sodium 2-Acrylamido-2-Methylpropane sulfonate" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Su, Na. „Synthesis of Poly (2-Acrylamido-2-methylpropanesulfnoinc Salt) Modified Carbon Spheres“. Polymers 15, Nr. 17 (23.08.2023): 3510. http://dx.doi.org/10.3390/polym15173510.

Der volle Inhalt der Quelle
Annotation:
The paper reports a facile synthesis of novel anionic spherical polymer brushes which was based on grafting sodium 2-acrylamido-2-methylpropane-1-sulfonate from the surface of 4,4′-Azobis (4-cyanopentanoyl chloride)-modified carbon spheres. Various characterization methods involving a scanning electron microscope, energy dispersive X-ray spectroscopy, Fourier transform infrared spectrum, and thermo-gravimetric analysis were utilized to analyze the morphology, chemical composition, bonding structure, and thermal stability, respectively. The molecular weight (Mw) and polydispersity (Mw/Mn) of brushes were 616,000 g/mol and 1.72 determined by gel permeation chromatography experiments. Moreover, the dispersibility of ASPB in water and in the presence of aqueous NaCl solutions of different concentrations was investigated. Results show that the dispersibility of carbon spheres has been enhanced owing to grafted polyelectrolyte chains, while the zeta potential of the particle decreases and its brush layer shrinks upon exposure to sodium ions (Na+).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Wang, Zhulun, Jian Wang, Benjamin Chu und Dennis G. Peiffer. „Solution behavior of random copolymers of styrene with sodium-2-acrylamido-2-methylpropane sulfonate“. Journal of Polymer Science Part B: Polymer Physics 29, Nr. 11 (Oktober 1991): 1361–71. http://dx.doi.org/10.1002/polb.1991.090291105.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Jitreewas, Parinya, Suwicha Saengvattanarat, Phanita Tansiri, Siriporn Pranee, Sunanta Chuayprakong, Chalermchai Khemtong und Samitthichai Seeyangnok. „Synthesis of PAA-PAMPS-PNaSS Terpolymers as Ultraviolet-Tagged Scale Inhibitor for Industrial Water Cooling System“. Key Engineering Materials 757 (Oktober 2017): 68–72. http://dx.doi.org/10.4028/www.scientific.net/kem.757.68.

Der volle Inhalt der Quelle
Annotation:
Carboxylated polymer can be used as an anti-scaling agent in circulating water cooling systems. Poly(acrylic acid) and homopolymer have some drawbacks such as slight solubility in water and low calcium tolerance leading difficulty to determine the remaining quantity of polymer in water. This research is mainly focused on synthesis and ability of poly(acrylic acid-co-2-acrylamido-2-methylpropane sulfonic acid) (PAA-PAMPS) for scale inhibition. These terpolymers varied in mole ratios of monomers were prepared via solution polymerization. The obtained polymers are then characterized by FT-IR, 1H-NMR, TGA, turbidity, and UV-visible spectroscopy. For a scale inhibition test, GB/T 16632-2008 standard is applied. The scale inhibition efficiency for 100% was found in PAA-PAMPS copolymer (7:3). Afterwards this polymer was chosen for synthesizing an ultraviolet-tagged PAA-PAMPS-PNaSS terpolymer. UV-visible spectroscopy was used to monitor benzene sulfonate structure in sodium styrene sulfonate of the polymer chain at 224 nm.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Paneva, Dilyana, Laetitia Mespouille, Nevena Manolova, Philippe Degée, Iliya Rashkov und Philippe Dubois. „Comprehensive study on the formation of polyelectrolyte complexes from (quaternized) poly[2-(dimethylamino)ethyl methacrylate] and poly(2-acrylamido-2-methylpropane sodium sulfonate)“. Journal of Polymer Science Part A: Polymer Chemistry 44, Nr. 19 (21.08.2006): 5468–79. http://dx.doi.org/10.1002/pola.21594.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Kapanya, Apichaya, Amlika Rungrod und Runglawan Somsunan. „Effect of Bacterial Cellulose on Silver-loaded Poly(sodium 2-acrylamido-2-methylpropane sulfonate) Hydrogel for Antibacterial Wound Dressing Application“. Fibers and Polymers 23, Nr. 12 (Dezember 2022): 3343–57. http://dx.doi.org/10.1007/s12221-022-4584-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Noor, Siti Aminah Mohd, Jiazeng Sun, Douglas R. MacFarlane, Michel Armand, Daniel Gunzelmann und Maria Forsyth. „Decoupled ion conduction in poly(2-acrylamido-2-methyl-1-propane-sulfonic acid) homopolymers“. J. Mater. Chem. A 2, Nr. 42 (2014): 17934–43. http://dx.doi.org/10.1039/c4ta03998j.

Der volle Inhalt der Quelle
Annotation:
A family of novel sulfonate based homopolymers has been prepared by partially replacing sodium cations with different types of ionic liquid ammonium counter-cations, leading to an increased degree of decoupling of the conductivity from the glass transition of the ionomers.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

El-Mahdy, Gamal, Ayman Atta und Hamad Al-Lohedan. „Synthesis and Evaluation of Poly(Sodium 2-Acrylamido-2-Methylpropane Sulfonate-co-Styrene)/Magnetite Nanoparticle Composites as Corrosion Inhibitors for Steel“. Molecules 19, Nr. 2 (30.01.2014): 1713–31. http://dx.doi.org/10.3390/molecules19021713.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Kakihana, Yuriko, N. Awanis Hashim, Taiko Mizuno, Marika Anno und Mitsuru Higa. „Ionic Transport Properties of Cation-Exchange Membranes Prepared from Poly(vinyl alcohol-b-sodium Styrene Sulfonate)“. Membranes 11, Nr. 6 (19.06.2021): 452. http://dx.doi.org/10.3390/membranes11060452.

Der volle Inhalt der Quelle
Annotation:
Membrane resistance and permselectivity for counter-ions have important roles in determining the performance of cation-exchange membranes (CEMs). In this study, PVA-based polyanions—poly(vinyl alcohol-b-sodium styrene sulfonate)—were synthesized, changing the molar percentages CCEG of the cation-exchange groups with respect to the vinyl alcohol groups. From the block copolymer, poly(vinyl alcohol) (PVA)-based CEMs, hereafter called “B-CEMs”, were prepared by crosslinking the PVA chains with glutaraldehyde (GA) solution at various GA concentrations CGA. The ionic transport properties of the B-CEMs were compared with those previously reported for the CEMs prepared using a random copolymer—poly(vinyl alcohol-co-2-acrylamido-2-methylpropane sulfonic acid)—hereafter called ”R-CEMs”. The B-CEMs had lower water content than the R-CEMs at equal molar percentages of the cation-exchange groups. The charge density of the B-CEMs increased as CCEG increased, and reached a maximum value, which increased with increasing CGA. A maximum charge density of 1.47 mol/dm3 was obtained for a B-CEM with CCEG = 2.9 mol% and CGA = 0.10 vol.%, indicating that the B-CEM had almost two-thirds of the permselectivity of a commercial CEM (CMX: ASTOM Corp. Japan). The dynamic transport number and membrane resistance of a B-CEM with CCEG = 8.3 mol% and CGA = 0.10 vol.% were 0.99 and 1.6 Ωcm2, respectively. The B-CEM showed higher dynamic transport numbers than those of the R-CEMs with similar membrane resistances.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Wu, Xiaogang, Chuanrong Zhong, Xiaofei Lian und Yan Yang. „Solution properties and aggregating structures for a fluorine-containing polymeric surfactant with a poly(ethylene oxide) macro-monomer“. Royal Society Open Science 5, Nr. 8 (August 2018): 180610. http://dx.doi.org/10.1098/rsos.180610.

Der volle Inhalt der Quelle
Annotation:
A polymeric surfactant (PFSA) was synthesized by the aqueous free-radical copolymerization using acrylamide, sodium 2-acrylamido-2-methylpropane sulfonate, allyl-capped octylphenoxy poly(ethylene oxide) (PEO) with the polymerization degree of 20 (AOP) and 1H,1H,2H,2H-perfluoro-1-decyl p -vinylbenzyl ether (VF). PFSA exhibited both the good surface and interfacial activities and the thickening behaviour. It could be used in enhanced oil recovery to increase both sweep and oil displacement efficiencies. The critical micelle concentration (CMC) of PFSA was 0.1 g l −1 in aqueous solution. The spherical micelles with the diameter of 100 nm were formed at CMC, and numerous compact worm-shaped micelles were observed above CMC. The interfacial tension was 0.027 mN m −1 for the 0.1 g l −1 PFSA solution containing 5 g l −1 NaCl and 0.209 g l −1 SDBS. The PFSA solutions still showed low interfacial tensions at high NaCl concentrations and temperatures, respectively, because of the incorporation of both VF and AOP containing long PEO.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Long, Shijun, Chang Liu, Han Ren, Yali Hu, Chao Chen, Yiwan Huang und Xuefeng Li. „NIR-Mediated Deformation from a CNT-Based Bilayer Hydrogel“. Polymers 16, Nr. 8 (19.04.2024): 1152. http://dx.doi.org/10.3390/polym16081152.

Der volle Inhalt der Quelle
Annotation:
Shape-shifting polymers are widely used in various fields such as intelligent switches, soft robots and sensors, which require both multiple stimulus-response functions and qualified mechanical strength. In this study, a novel near-infrared-light (NIR)-responsible shape-shifting hydrogel system was designed and fabricated through embedding vinylsilane-modified carbon nanotubes (CNTs) into particle double-network (P-DN) hydrogels by micellar copolymerisation. The dispersed brittle Poly(sodium 2-acrylamido-2-methylpropane-1-sulfonate) (PNaAMPS) network of the microgels can serve as sacrificial bonds to toughen the hydrogels, and the CNTs endow it with NIR photothermal conversion ability. The results show that the CNTs embedded in the P-DN hydrogels present excellent mechanical strength, i.e., a fracture strength of 312 kPa and a fracture strain of 357%. Moreover, an asymmetric bilayer hydrogel, where the active layer contains CNTs, can achieve 0°–110° bending deformation within 10 min under NIR irradiation and can realise complex deformation movement. This study provides a theoretical and experimental basis for the design and manufacture of photoresponsive soft actuators.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Emik, Serkan, und Gülten Gürdağ. „Synthesis and swelling behavior of thermosensitive poly(N-isopropyl acrylamide-co-sodium-2-acrylamido-2-methyl propane sulfonate) and poly(N-isopropyl acrylamide-co-sodium-2-acrylamido-2-methyl propane sulfonate-co-glycidyl methacrylate) hydrogels“. Journal of Applied Polymer Science 100, Nr. 1 (2006): 428–38. http://dx.doi.org/10.1002/app.23126.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Huglin, Malcolm B., Lee Webster und Ian D. Robb. „Complex formation between poly(4-vinylpyridinium chloride) and poly[sodium(2-acrylamido-2-methyl propane sulfonate)] in dilute aqueous solution“. Polymer 37, Nr. 7 (März 1996): 1211–15. http://dx.doi.org/10.1016/0032-3861(96)80848-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Gromadzki, Daniel, Alexey Tereshchenko und Ričardas Makuška. „Synthesis by self-condensing AGET ATRP and solution properties of arborescent poly(sodium 2-acrylamido-2-methyl-N-propane sulfonate)“. Polymer 51, Nr. 24 (November 2010): 5680–87. http://dx.doi.org/10.1016/j.polymer.2010.09.058.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Vijitha, Raagala, Kasula Nagaraja, Marlia M. Hanafiah, Kummara Madhusudana Rao, Katta Venkateswarlu, Sivarama Krishna Lakkaboyana und Kummari S. V. Krishna Rao. „Fabrication of Eco-Friendly Polyelectrolyte Membranes Based on Sulfonate Grafted Sodium Alginate for Drug Delivery, Toxic Metal Ion Removal and Fuel Cell Applications“. Polymers 13, Nr. 19 (27.09.2021): 3293. http://dx.doi.org/10.3390/polym13193293.

Der volle Inhalt der Quelle
Annotation:
Polyelectrolyte membranes (PEMs) are a novel type of material that is in high demand in health, energy and environmental sectors. If environmentally benign materials are created with biodegradable ones, PEMs can evolve into practical technology. In this work, we have fabricated environmentally safe and economic PEMs based on sulfonate grafted sodium alginate (SA) and poly(vinyl alcohol) (PVA). In the first step, 2-acrylamido-2-methyl-1-propanesulphonic acid (AMPS) and sodium 4-vinylbenzene sulfonate (SVBS) are grafted on to SA by utilizing the simple free radical polymerization technique. Graft copolymers (SA-g-AMPS and SA-g-SVBS) were characterized by 1H NMR, FTIR, XRD and DSC. In the second step, sulfonated SA was successfully blended with PVA to fabricate PEMs for the in vitro controlled release of 5-fluorouracil (anti-cancer drug) at pH 1.2 and 7.4 and to remove copper (II) ions from aqueous media. Moreover, phosphomolybdic acids (PMAs) incorporated with composite PEMs were developed to evaluate fuel cell characteristics, i.e., ion exchange capacity, oxidative stability, proton conductivity and methanol permeability. Fabricated PEMs are characterized by the FTIR, ATR-FTIR, XRD, SEM and EDAX. PMA was incorporated. PEMs demonstrated maximum encapsulation efficiency of 5FU, i.e., 78 ± 2.3%, and released the drug maximum in pH 7.4 buffer. The maximum Cu(II) removal was observed at 188.91 and 181.22 mg.g–1. PMA incorporated with PEMs exhibited significant proton conductivity (59.23 and 45.66 mS/cm) and low methanol permeability (2.19 and 2.04 × 10−6 cm2/s).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Clara, I., und N. Natchimuthu. „Hydrogels based on starch-g-poly(sodium-2-acrylamido-2-methyl-1-propane sulfonate-co-methacrylic acid) as controlled drug delivery systems“. Starch - Stärke 69, Nr. 7-8 (05.10.2016): 1600177. http://dx.doi.org/10.1002/star.201600177.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Urbano, Bruno, und Bernabé L. Rivas. „Poly(sodium 4-styrene sulfonate) and poly(2-acrylamido glycolic acid) polymer-clay ion exchange resins with enhanced mechanical properties and metal ion retention“. Polymer International 61, Nr. 1 (03.10.2011): 23–29. http://dx.doi.org/10.1002/pi.3178.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Paneva, Dilyana, Laetitia Mespouille, Nevena Manolova, Philippe Degée, Iliya Rashkov und Philippe Dubois. „Preparation of Well-Defined Poly[(ethylene oxide)-block-(sodium 2-acrylamido-2-methyl-1-propane sulfonate)] Diblock Copolymers by Water-Based Atom Transfer Radical Polymerization“. Macromolecular Rapid Communications 27, Nr. 17 (04.09.2006): 1489–94. http://dx.doi.org/10.1002/marc.200600389.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Paneva, Dilyana, Laetitia Mespouille, Nevena Manolova, Philippe Degée, Iliya Rashkov und Philippe Dubois. „Preparation of Well-Defined Poly[(ethylene oxide)-block-(sodium 2-acrylamido-2-methyl-1-propane sulfonate)] Diblock Copolymers by Water-Based Atom Transfer Radical Polymerization“. Macromolecular Rapid Communications 28, Nr. 23 (20.11.2007): 2277. http://dx.doi.org/10.1002/marc.200700758.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Bastakoti, Bishnu Prasad, Sudhina Guragain, Airi Yoneda, Yuuichi Yokoyama, Shin-ichi Yusa und Kenichi Nakashima. „Micelle formation of poly(ethylene oxide-b-sodium 2-(acrylamido)-2-methyl-1-propane sulfonate-b-styrene) and its interaction with dodecyl trimethyl ammonium chloride and dibucaine“. Polym. Chem. 1, Nr. 3 (2010): 347–53. http://dx.doi.org/10.1039/b9py00231f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Sánchez, Julio, Carol Rodriguez, Estefanía Oyarce und Bernabé L. Rivas. „Removal of chromium ions by functional polymers in conjunction with ultrafiltration membranes“. Pure and Applied Chemistry 92, Nr. 6 (25.06.2020): 883–96. http://dx.doi.org/10.1515/pac-2019-1103.

Der volle Inhalt der Quelle
Annotation:
AbstractIn the current research water-soluble functional polymers (WSFP) were prepared via radical polymerization and purified by fractionation through ultrafiltration membranes with different molecular weights cut off (MWCO) of 30 and 100 kDa. The WSFPs were poly(3-acrylamide propyl) trimethyl ammonium chloride, P(ClAPTA), poly(2-acrylamido-2-methyl-1-propane sodium sulfonate, P(AMPSNa), and poly(3-methacrylamino propyl) dimethyl 3-sulfopropyl ammonium hydroxide, P(HMPDSPA). These polymers were characterized by Fourier transformed infrared spectroscopy (FT-IR) and thermogravimetry analysis (TGA). Using liquid-phase polymer-based retention technique (LPR), chromium [Cr(III) and Cr(VI)] retention was studied as a function of pH, polymer and chromium concentration, selectivity, maximum retention capacity, chromium elution capacity, and polymer regeneration through sorption and desorption studies. Results of FT-IR showed the characteristic absorption bands of the synthesized polymers. The decomposition temperatures of P(ClAPTA) were at 303.1 °C, and for P(AMPSNa) three decompositions temperatures were registered at 190.5 °C, 223.2 °C, and 304.8 °C. P(HMPDSPA) presented two important decomposition temperatures at 292.4 °C and 391.7 °C, respectively. Concerning to the retention of Cr(VI), it was maximal (100 %) when P(ClAPTA) was studied at pH 6. The maximum retention of Cr(III) (100 %) was achieved by P(AMPSNa) at pH 3. The optimum polymer:Cr mole ratio obtained was 10:1 for both Cr(VI) and Cr(III). The retention of Cr(VI) decreased due to the presence of interfering ions, and the hydrodynamic flow was almost constant during the ultrafiltration of polymer-Cr macromolecule.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Vijitha, Raagala, Nagella Sivagangi Reddy, Kasula Nagaraja, Tiruchuru J. Sudha Vani, Marlia M. Hanafiah, Katta Venkateswarlu, Sivarama Krishna Lakkaboyana, Kummari S. V. Krishna Rao und Kummara Madhususdana Rao. „Fabrication of Polyelectrolyte Membranes of Pectin Graft-Copolymers with PVA and Their Composites with Phosphomolybdic Acid for Drug Delivery, Toxic Metal Ion Removal, and Fuel Cell Applications“. Membranes 11, Nr. 10 (18.10.2021): 792. http://dx.doi.org/10.3390/membranes11100792.

Der volle Inhalt der Quelle
Annotation:
In this study, a simple method for the fabrication of highly diffusive, adsorptive and conductive eco-friendly polyelectrolyte membranes (PEMs) with sulfonate functionalized pectin and poly(vinyl alcohol)(PVA) was established. The graft-copolymers were synthesized by employing the use of potassium persulfate as a free radical initiator from pectin (PC), a carbohydrate polymer with 2-acrylamido-2-methyl-1-propanesulphonic acid (AMPS) and sodium 4-vinylbenzene sulphonate (SVBS). The PEMs were fabricated from the blends of pectin graft-copolymers (PC-g-AMPS and PC-g-SVBS) and PVA by using a solution casting method, followed by chemical crosslinking with glutaraldehyde. The composite PEMs were fabricated by mixing phosphomolybdic acid with the aforementioned blends. The PEMs were successfully characterized by FTIR, XRD, SEM, and EDAX studies. They were assessed for the controlled release of an anti-cancer drug (5-fluorouracil) and the removal of toxic metal ions (Cu2+) from aqueous media. Furthermore, the composite PEMs were evaluated for fuel cell application. The 5-fluorouracil release capacity of the PEMs was found to be 93% and 99.1% at 300 min in a phosphate buffer solution (pH = 7.4). The highest Cu2+ removal was observed at 206.7 and 190.1 mg/g. The phosphomolybdic acid-embedded PEMs showed superior methanol permeability, i.e., 6.83 × 10−5, and 5.94 × 10−5, compared to the pristine PEMs. Furthermore, the same trend was observed for the proton conductivities, i.e., 13.77 × 10−3, and 18.6 × 10−3 S/cm at 30 °C.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Xu, Jia, und Gui Bao Guo. „Studies on Preparation and Methanol Permeability of PVDF-g-PAMPS Membrane“. Advanced Materials Research 335-336 (September 2011): 157–60. http://dx.doi.org/10.4028/www.scientific.net/amr.335-336.157.

Der volle Inhalt der Quelle
Annotation:
A proton exchange membrane of poly (vinylidene fluoride) grafted onto poly (2-acrylamido-2-methylpropane sulfonic acid) (PVDF-g-PAMPS) was prepared as follows: acrylamido-2-methylpropane sulfonic acid (AMPS) was first added to a N-Methyl pyrrolidone (NMP) solution containing poly (vinylidene fluoride) (PVDF) that was modified with plain sodium silicate. Ammonium persulfate was then added as an evocating agent and PAMPS was directly grafted onto the PVDF that was modified with plain sodium silicate. The influences of AMPS contents on the proton conductivity and methanol permeability were studied. The results showed that AMPS is easily grafted into PVDF modified by Plain sodium silicate (Na4SiO4), with increasing of the content of 2-acrylamido-2-methylpropane sulfonic acid, the methanol permeability became large gradually of PVDF-g-PAMPS membranes was increased.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Li, Yu Sheng, Gui Bao Guo und Sheng Li An. „Studies on Preparation and Properties of PVDF-g-PAMPS Membrane“. Advanced Materials Research 311-313 (August 2011): 244–47. http://dx.doi.org/10.4028/www.scientific.net/amr.311-313.244.

Der volle Inhalt der Quelle
Annotation:
A proton exchange membrane of poly (vinylidene fluoride) grafted onto poly (2-acrylamido-2-methylpropane sulfonic acid) (PVDF-g-PAMPS) was prepared as follows: acrylamido-2-methylpropane sulfonic acid (AMPS) was first added to a N-Methyl pyrrolidone (NMP) solution containing poly (vinylidene fluoride) (PVDF) that was modified with plain sodium silicate. Ammonium persulfate was then added as an evocating agent and PAMPS was directly grafted onto the PVDF that was modified with plain sodium silicate. The influences of AMPS contents on the proton conductivity and mechanical properties were studied. The results showed that AMPS is easily grafted into PVDF modified by Plain sodium silicate (Na4SiO4) and mechanical properties were improved, with increasing of the content of 2-acrylamido-2-methylpropane sulfonic acid, the proton conductivity of PVDF-g-PAMPS membranes was increased.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Yakimtsova, L. B., Ya K. Martinkevich und E. T. Krut’ko. „Adhesive Materials Based on Copolymers of Sodium 2-Acrylamido-2-Methylpropane Sulfonate“. Polymer Science, Series D 16, Nr. 4 (Dezember 2023): 936–40. http://dx.doi.org/10.1134/s1995421223040378.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Nikolaou, Vasiliki, Alexandre Simula, Martijn Droesbeke, Nuttapol Risangud, Athina Anastasaki, Kristian Kempe, Paul Wilson und David M. Haddleton. „Polymerisation of 2-acrylamido-2-methylpropane sulfonic acid sodium salt (NaAMPS) and acryloyl phosphatidylcholine (APC) via aqueous Cu(0)-mediated radical polymerisation“. Polymer Chemistry 7, Nr. 14 (2016): 2452–56. http://dx.doi.org/10.1039/c5py02016f.

Der volle Inhalt der Quelle
Annotation:
The scope of aqueous Cu(0)-mediated living radical polymerisation has been expanded with the preparation of poly(2-acrylamido-2-methylpropane sulfonic acid)sodium salt (P(NaAMPS)) and poly(acryloyl phosphatidycholine) (PAPC).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Guo, Gui Bao, und Sheng Li An. „Structure and Morphology of PVDF-G-PAMPS Membrane“. Advanced Materials Research 197-198 (Februar 2011): 1321–24. http://dx.doi.org/10.4028/www.scientific.net/amr.197-198.1321.

Der volle Inhalt der Quelle
Annotation:
A proton exchange membrane of blended poly (acrylamido-2- methylpropane sulfonic acid) (PAMPS) grafted onto modified poly (vinylidene fluoride) (PVDF) membrane (PVDF-g-PAMPS) was prepared. Fourier transform infrared spectroscopy is used to characterize changes of the membrane's microstructures after grafting. The morphology of the membrane's microstructures after grafting is studied by scanning electrolytic microscope.The results show that 2-acrylamido-2-methylpropane sulfonic acid is easily grafted into PVDF modified by Plain sodium silicate (Na4SiO4).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Kurenkov, V. F., und L. M. Shipova. „Copolymerization of Acrylamide with Sodium-2-Acrylamido-2-Methylpropane Sulfonate in Inverse Emulsion“. Polymer-Plastics Technology and Engineering 36, Nr. 5 (September 1997): 723–32. http://dx.doi.org/10.1080/03602559708000657.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Darwish, Sohair A., Ibrahim M. Ibrahim, Nasser Y. Mostafa, Mostafa A. Radwan, Mohamed A. Sadek und Hany A. Elazab. „Water Absorption Enhancement of Sodium Poly Acrylate and Poly(2-Acrylamido-2-Methylpropane Sulphonic Acid) Based Hydrogel Mixtures“. Open Chemical Engineering Journal 15, Nr. 1 (24.12.2021): 49–54. http://dx.doi.org/10.2174/1874123102115010049.

Der volle Inhalt der Quelle
Annotation:
Introduction: Hydrogels are hydrophilic polymers which are cross-linked to form three-dimensional structures, which can absorb, swell and retain huge amounts of water or aqueous fluids. Objective: This paper reports the preparation and characterisation of Poly(2-Acrylamido-2-Methylpropane Sulphonic Acid) (PAMPS) hydrogel with different crosslinking intensities. Methodology: 2-Acrylamido-2-methylpropane sulfonic acid (AMPS) monomer was purchased from Alfa Aesar Company as reagent grade. It was used as received (>98% purity) without any further purification. PAMPS hydrogel was prepared by free radical crosslinking solution polymerization of AMPS in water at room temperature under a nitrogen blanket in cylindrical glass tubes. The characteristics of the obtained PAMPS hydrogel were compared with those of commercial sodium polyacrylates hydrogel. Results: It was found that decreasing the crosslinker weight improved the absorbance capacity but to a limit. The suggested reasons were discussed. The mixture showed higher absorbance rate than PAMPS, and bigger absorbance capacity than sodium polyacrylates. Conclusion: This paper investigates the effect of crosslinker ratio on the swelling capacity of PAMPS. It was found that as the crosslinking ratio decreases, the porosity of the hydrogel increases, thus improving the swelling capacity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Kurenkov, V. F., A. V. Kurenkov und F. I. Lobanov. „Radical copolymerization of sodium 2-acrylamido-2-methylpropane sulfonate and sodium acrylate in water-alcohol solutions“. Polymer Science Series B 53, Nr. 3-4 (April 2011): 132–36. http://dx.doi.org/10.1134/s1560090411020060.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Murakami, Yoshinobu, Hiroo Iwata, Etsuko Kitano, Hajime Kitamura und Yoshito Ikada. „Interaction of poly(2-acrylamido 2-methylpropane sulfonate)-grafted polystyrene beads with cationic complement proteins“. Journal of Biomaterials Science, Polymer Edition 12, Nr. 4 (Januar 2001): 451–65. http://dx.doi.org/10.1163/156856201750195315.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Liu, Ying, Jing Li, Xiaoli Cheng, Xuehong Ren und T. S. Huang. „Self-assembled antibacterial coating by N-halamine polyelectrolytes on a cellulose substrate“. Journal of Materials Chemistry B 3, Nr. 7 (2015): 1446–54. http://dx.doi.org/10.1039/c4tb01699h.

Der volle Inhalt der Quelle
Annotation:
In this research, two N-halamine polymer precursors, a cationic homopolymer poly((3-acrylamidopropyl)trimethylammonium chloride) (CHP) and an anionic homopolymer poly(2-acrylamido-2-methylpropane sulfonic acid sodium salt) (AHP), have been successfully synthesized and coated onto cotton fabrics via a layer-by-layer (LbL) deposition technique.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Huang, Jingjing, Chuanrong Zhong und Xiaogang Wu. „Shear behavior at high pressures and viscoelastic properties in water and in brine solutions with high salinities for a tetra-polymer containing poly(ethylene oxide) side chains“. RSC Adv. 7, Nr. 75 (2017): 47624–35. http://dx.doi.org/10.1039/c7ra09771a.

Der volle Inhalt der Quelle
Annotation:
A novel tetra-polymer (PASV) was synthesized using acrylamide(AM), vinyl biphenyl (VP), sodium 2-acrylamido-2-methylpropane sulphonate (NaAMPS), and a novel salt-tolerant allyl-capped macromonomer AE.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Kurenkov, V. F., T. A. Zhelonkina, M. A. Nefedova und F. I. Lobanov. „Copolymerization of Sodium 2-Acrylamido-2-methylpropane-1-sulfonate with N-Vinylpyrrolidone in Aqueous Dimethylformamide Solutions“. Russian Journal of Applied Chemistry 78, Nr. 7 (Juli 2005): 1170–75. http://dx.doi.org/10.1007/s11167-005-0473-y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Kurenkov, V. F., T. A. Zhelonkina, A. N. Meshcheryakova und F. I. Lobanov. „Copolymerization of Sodium 2-Acrylamido-2-Methylpropane-1-Sulfonate with N-Vinylpyrrolidone in Aqueous-Ethanol Solutions“. Russian Journal of Applied Chemistry 78, Nr. 10 (Oktober 2005): 1668–73. http://dx.doi.org/10.1007/s11167-005-0583-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

YAKIMTSOVA, L. B., und E. T. KRUTKO. „RELATIVE ACTIVITIES OF METHACRYLAMIDE AND 2-ACRYLAMIDO-2-METHYLPROPANE SODIUM SULFONATE IN THE RADICAL COPOLYMERIZATION REACTION“. Polymer materials and technologies 8, Nr. 2 (2022): 25–29. http://dx.doi.org/10.32864/polymmattech-2022-8-2-25-29.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Seetapan, Nispa, Nattawut Limparyoon und Suda Kiatkamjornwong. „Effect of fire retardant on flammability of acrylamide and 2-acrylamido-2-methylpropane sodium sulfonate copolymer composites“. Polymer Degradation and Stability 96, Nr. 10 (Oktober 2011): 1927–33. http://dx.doi.org/10.1016/j.polymdegradstab.2011.06.014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Su, Pi-Guey, und Shuay-Chwen Huang. „Electrical and humidity sensing properties of carbon nanotubes-SiO2-poly(2-acrylamido-2-methylpropane sulfonate) composite material“. Sensors and Actuators B: Chemical 113, Nr. 1 (Januar 2006): 142–49. http://dx.doi.org/10.1016/j.snb.2005.02.040.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Czarnecka, Elżbieta, und Jacek Nowaczyk. „Synthesis and Characterization Superabsorbent Polymers Made of Starch, Acrylic Acid, Acrylamide, Poly(Vinyl Alcohol), 2-Hydroxyethyl Methacrylate, 2-Acrylamido-2-methylpropane Sulfonic Acid“. International Journal of Molecular Sciences 22, Nr. 9 (21.04.2021): 4325. http://dx.doi.org/10.3390/ijms22094325.

Der volle Inhalt der Quelle
Annotation:
Three polymers with excellent absorption properties were synthesized by graft polymerization: soluble starch-g-poly(acrylic acid-co-2-hydroxyethyl methacrylate), poly(vinyl alcohol)/potato starch-g-poly(acrylic acid-co-acrylamide), poly(vinyl alcohol)/potato starch-g-poly(acrylic acid-co-acrylamide-co-2-acrylamido-2-methylpropane sulfonic acid). Ammonium persulfate and potassium persulfate were used as initiators, while N,N′-methylenebisacrylamide was used as the crosslinking agent. The molecular structure of potato and soluble starch grafted by synthetic polymers was characterized by means of Fourier Transform Infrared Spectroscopy (FTIR). The morphology of the resulting materials was studied using a scanning electron microscope (SEM). Thermal stability was tested by thermogravimetric measurements. The absorption properties of the obtained biopolymers were tested in deionized water, sodium chroma solutions of various concentrations and in buffer solutions of various pH.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Molchanov, Vyacheslav S., Andrey V. Shibaev, Eduard V. Karamov, Viktor F. Larichev, Galina V. Kornilaeva, Irina T. Fedyakina, Ali S. Turgiev, Olga E. Philippova und Alexei R. Khokhlov. „Antiseptic Polymer–Surfactant Complexes with Long-Lasting Activity against SARS-CoV-2“. Polymers 14, Nr. 12 (16.06.2022): 2444. http://dx.doi.org/10.3390/polym14122444.

Der volle Inhalt der Quelle
Annotation:
Antiseptic polymer gel–surfactant complexes were prepared by incorporating the low-molecular-weight cationic disinfectant cetylpyridinium chloride into the oppositely charged, slightly cross-linked polymer matrices. Three types of polymers were used: copolymers of acrylamide and sodium 2-acrylamido-2-methylpropane sulfonate; copolymers of acrylamide and sodium methacrylate; copolymers of vinylpyrrolidone and sodium methacrylate. It was shown that the rate of the release of the cationic disinfectant from the oppositely charged polymer gels could be tuned in a fairly broad range by varying the concentration of the disinfectant, the degree of swelling, and degree of cross-linking of the gel and the content/type of anionic repeat units in the polymer matrix. Polymer–surfactant complexes were demonstrated to reduce SARS-CoV-2 titer by seven orders of magnitude in as little as 5 s. The complexes retained strong virucidal activity against SARS-CoV-2 for at least one week.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Al-Hussain, Sami, Ayman Atta, Hamad Al-Lohedan, Abdelrahman Ezzat und Ahmed Tawfeek. „Application of New Sodium Vinyl Sulfonate–co-2-Acrylamido-2-me[thylpropane Sulfonic Acid Sodium Salt-Magnetite Cryogel Nanocomposites for Fast Methylene Blue Removal from Industrial Waste Water“. Nanomaterials 8, Nr. 11 (25.10.2018): 878. http://dx.doi.org/10.3390/nano8110878.

Der volle Inhalt der Quelle
Annotation:
Inorganic nanoparticles based on magnetite were used to improve the mechanical, thermal, and magnetic properties of microporous cryogel polymer composites. Here we report the synthesis of microporous cryogel based on the crosslinked sodium vinyl sulfonate (Na-VS) and 2-acrylamido-2-methylpropane sulfonic acid sodium salt (Na-AMPS). The magnetite nanoparticles were incorporated into Na-VS/Na-AMPS cryogel networks either during its crosslinking polymerization or by the in-situ technique after its crosslinking. The morphology, particle sizes, thermal stability, and magnetite contents of Na-VS/Na-AMPS cryogel and its magnetite composite were investigated. The prepared Na-VS/Na-AMPS cryogel and its magnetite composite were used as adsorbents for methylene blue (MB) cationic dye using optimum conditions. The magnetite Na-VS/Na-AMPS cryogel composite prepared by in-situ technique achieved the best adsorption MB removal capacity for 7 cycles among the other adsorbents via chemical adsorption mechanism at room temperature.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Xin, Haipeng, Dun Ao, Xiaojin Wang, Yuejun Zhu, Jian Zhang und Yebang Tan. „Synthesis, characterization, and properties of copolymers of acrylamide with sodium 2-acrylamido-2-methylpropane sulfonate with nano silica structure“. Colloid and Polymer Science 293, Nr. 5 (25.01.2015): 1307–16. http://dx.doi.org/10.1007/s00396-015-3512-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Su, Pi Guey, I. Cherng Chen und Ren-Jang Wu. „Use of poly(2-acrylamido-2-methylpropane sulfonate) modified with tetraethyl orthosilicate as sensing material for measurement of humidity“. Analytica Chimica Acta 449, Nr. 1-2 (Dezember 2001): 103–9. http://dx.doi.org/10.1016/s0003-2670(01)01345-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Al-Hussain, Sami A., Abdelrhman O. Ezzat, Amany K. Gaffer und Ayman M. Atta. „Removal of organic water pollutant using magnetite nanomaterials embedded with ionic copolymers of 2-acrylamido-2-methylpropane sodium sulfonate cryogels“. Polymer International 67, Nr. 2 (30.11.2017): 166–77. http://dx.doi.org/10.1002/pi.5492.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

SU, P., und W. TSAI. „Humidity sensing and electrical properties of a composite material of nano-sized SiO2 and poly(2-acrylamido-2-methylpropane sulfonate)“. Sensors and Actuators B: Chemical 100, Nr. 3 (15.05.2004): 417–22. http://dx.doi.org/10.1016/j.snb.2004.02.011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Kalaithong, Wichaya, Robert Molloy, Kanarat Nalampang und Runglawan Somsunan. „Design and optimization of polymerization parameters of carboxymethyl chitosan and sodium 2-acrylamido-2-methylpropane sulfonate hydrogels as wound dressing materials“. European Polymer Journal 143 (Januar 2021): 110186. http://dx.doi.org/10.1016/j.eurpolymj.2020.110186.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

SU, P., und C. UEN. „A resistive-type humidity sensor using composite films prepared from poly(2-acrylamido-2-methylpropane sulfonate) and dispersed organic silicon sol“. Talanta 66, Nr. 5 (15.06.2005): 1247–53. http://dx.doi.org/10.1016/j.talanta.2005.01.039.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Mahdavi, Hossein, und Rafie Bagherifar. „Cellulose acetate/SiO2-poly(2-Acrylamido-2-methylpropane sulfonic acid) hybrid nanofiltration membrane: application in removal of ceftriaxone sodium“. Journal of the Iranian Chemical Society 15, Nr. 12 (16.08.2018): 2839–49. http://dx.doi.org/10.1007/s13738-018-1470-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Chandra Babu, A., M. N. Prabhakar, A. Suresh Babu, B. Mallikarjuna, M. C. S. Subha und K. Chowdoji Rao. „Development and Characterization of Semi-IPN Silver Nanocomposite Hydrogels for Antibacterial Applications“. International Journal of Carbohydrate Chemistry 2013 (21.03.2013): 1–8. http://dx.doi.org/10.1155/2013/243695.

Der volle Inhalt der Quelle
Annotation:
Sodium carboxymethyl cellulose/poly(acrylamide-co-2-acrylamido-2-methylpropane sulfonic acid) semi-interpenetrating polymer network (semi-IPN) hydrogels were prepared by using free radical polymerization technique. Silver nanoparticles were formed by reduction of silver nitrate in semi-IPN hydrogels with sodium borohydrate at room temperature. UV-visible spectroscopy, thermogravimetrical analysis, X-ray diffractometry, scanning electron microscopy, and transmission electron microscopy techniques were used to characterize the formation of silver nanoparticles in hydrogels. SEM images indicated clearly the formation of group of silver nanoparticles with size range of 10–20 nm. The sizes of silver nanoparticles were also supported by transmission electron microscopy results. The semi-IPN silver nanocomposite hydrogels reported here might be a potentially smart material in the range of applications of antibacterial activity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Li, Liang, Jixiang Guo, Chuanhong Kang und Hanxuan Song. „Reinforcement of Nanocomposite Hydrogel with Dialdehyde Cellulose Nanofibrils via Physical and Double Network Crosslinking Synergies“. Polymers 15, Nr. 7 (01.04.2023): 1765. http://dx.doi.org/10.3390/polym15071765.

Der volle Inhalt der Quelle
Annotation:
Preparation of tough and high-strength hydrogels for water plugging in oil fields with an easy-scalable method is still considered to be a challenge. In this study, dialdehyde cellulose nanofibril (DA-CNF) prepared by sodium periodate oxidation, polyamine, 2-acrylamido-2-methylpropane sulfonic acid (AMPS) with sulfonate groups and Acrylamide (AM) as raw materials, CNF reinforced nanocomposite hydrogels were prepared in one step by in-situ polymerization. The tensile strength, and texture stability of the obtained nanocomposite hydrogel were determined. The results showed that the tensile strength and toughness of the obtained nanocomposite hydrogel increased four times compared with control sample due to physical and chemical double crosslinking synergies. Moreover, the texture intensity of DA-CNFs reinforced hydrogel still maintains high stability and strength performance under high salinity conditions. Therefore, DA-CNF reinforced hydrogel has potential application value in both normal and high-salinity environments in oil recovery.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

SU, P., Y. SUN und C. LIN. „Novel low humidity sensor made of TiO2 nanowires/poly(2-acrylamido-2-methylpropane sulfonate) composite material film combined with quartz crystal microbalance“. Talanta 69, Nr. 4 (15.06.2006): 946–51. http://dx.doi.org/10.1016/j.talanta.2005.11.039.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie