Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Poly ionic resins“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Poly ionic resins" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Poly ionic resins"
Kartika, Siska Ela, und Muhammad Bachri Amran. „Sintesis dan Karakterisasi Poly (Anthranilic Acid-Co-Formaldehyde) untuk Adsorpsi Ion Pb(II)“. ALCHEMY 9, Nr. 1 (30.03.2021): 15–25. http://dx.doi.org/10.18860/al.v9i1.11476.
Der volle Inhalt der QuelleSaha, Anushree, Manas Kanti Deb, Mithlesh Mahilang und Shubhra Sinha. „Intriguing Clinical and Pharmaceutical Applications of IERs: A Mini Review“. Journal of Ravishankar University (PART-B) 33, Nr. 1 (04.07.2020): 47–57. http://dx.doi.org/10.52228/jrub.2020-33-1-7.
Der volle Inhalt der QuelleOrduna, Lidia, Iker Razquin, Itziar Otaegi, Nora Aranburu und Gonzalo Guerrica-Echevarría. „Ionic Liquid-Cured Epoxy/PCL Blends with Improved Toughness and Adhesive Properties“. Polymers 14, Nr. 13 (30.06.2022): 2679. http://dx.doi.org/10.3390/polym14132679.
Der volle Inhalt der QuellePothanagandhi, Nellepalli, und Kari Vijayakrishna. „RAFT derived chiral and achiral poly(ionic liquids) resins: Synthesis and application in organocatalysis“. European Polymer Journal 95 (Oktober 2017): 785–94. http://dx.doi.org/10.1016/j.eurpolymj.2017.08.002.
Der volle Inhalt der QuelleOrduna, Lidia, Itziar Otaegi, Nora Aranburu und Gonzalo Guerrica-Echevarría. „Effect of the Simultaneous Addition of Polycaprolactone and Carbon Nanotubes on the Mechanical, Electrical, and Adhesive Properties of Epoxy Resins Cured with Ionic Liquids“. Polymers 15, Nr. 7 (23.03.2023): 1607. http://dx.doi.org/10.3390/polym15071607.
Der volle Inhalt der QuelleCharyton, Martyna, Francesco Deboli, Peter Fischer, Gerard Henrion, Mathieu Etienne und Mateusz L. Donten. „Composite Anion Exchange Membranes Fabricated by Coating and UV Crosslinking of Low-Cost Precursors Tested in a Redox Flow Battery“. Polymers 13, Nr. 15 (21.07.2021): 2396. http://dx.doi.org/10.3390/polym13152396.
Der volle Inhalt der QuelleTenhaeff, Wyatt. „(Invited) Multifunctional Lithium Ion Battery Separators through Polymerization-Induced Phase Separation“. ECS Meeting Abstracts MA2022-02, Nr. 1 (09.10.2022): 28. http://dx.doi.org/10.1149/ma2022-02128mtgabs.
Der volle Inhalt der QuellePazur, Richard J., und T. Mengistu. „INFLUENCE OF THE CROSSLINK STRUCTURE ON THE ACTIVATION ENERGY CALCULATED UNDER THERMO-OXIDATIVE CONDITIONS“. Rubber Chemistry and Technology 91, Nr. 1 (01.01.2018): 205–24. http://dx.doi.org/10.5254/rct-17-83714.
Der volle Inhalt der QuelleMendes, Adriano A., Larissa Freitas, Ana Karine F. de Carvalho, Pedro C. de Oliveira und Heizir F. de Castro. „Immobilization of a Commercial Lipase from Penicillium camembertii (Lipase G) by Different Strategies“. Enzyme Research 2011 (24.07.2011): 1–8. http://dx.doi.org/10.4061/2011/967239.
Der volle Inhalt der QuelleWanghofer, Florian, Archim Wolfberger, Markus Wolfahrt und Sandra Schlögl. „Cross-Linking and Evaluation of the Thermo-Mechanical Behavior of Epoxy Based Poly(ionic Liquid) Thermosets“. Polymers 13, Nr. 22 (12.11.2021): 3914. http://dx.doi.org/10.3390/polym13223914.
Der volle Inhalt der QuelleDissertationen zum Thema "Poly ionic resins"
Sengupta, Debasish. „Preparation, characterization of bimetalic nanoparticles soaked on poly -ionic resins and their ctalalytic applications“. Thesis, University of North Bengal, 2014. http://ir.nbu.ac.in/handle/123456789/1827.
Der volle Inhalt der QuelleKundu, Sekhar. „Poly ionic resins supported reagents and catalysts : applications to c c & c heteroatom bond forming reactions“. Thesis, University of North Bengal, 2012. http://hdl.handle.net/123456789/1449.
Der volle Inhalt der QuelleLi-HsuanChien und 簡莉軒. „Synthesis of Epoxy resin/Polyetherdiamine Membranes Blended with Silica or Poly(ionic liquid) for Lithium Ion Batteries“. Thesis, 2014. http://ndltd.ncl.edu.tw/handle/uzb598.
Der volle Inhalt der Quelle國立成功大學
化學工程學系
102
The first part of this study is preparation of Silica/Epoxy resin crosslinked with Polyetherdiamine for the polymer electrolyte membrane. The particle size of silica ranged from 30 to 50 nm by TEM analysis. The surface characterization of membranes were obtained by SEM, and the result indicates that silica was dispersed uniformly. From the TGA and LOI analysis, the result indicates the membrane has great thermal stability and it has improved flame resistance and hindered combustion. The electrochemical window of the membrane is up to 5.35 V. The ionic conductivity of polymer electrolytes ranged between 5.1~7.0×10-4 S cm-1 at room temperature, (2.54~2.93×10-3 S cm-1 at 80℃). For battery application, the capacities of the cell made of hybrid polymer electrolyte can be up to 153 mAh g-1 at 0.1 C and 72 mAh g-1 at 5 C. The second part of this study is preparation of poly(ionic liquid)/Epoxy resin crosslinked with Polyetherdiamine for the polymer electrolyte membrane. Poly(ionic liquid) was characterized with FT-IR and 1H NMR analysis to confirm the chemical structure. From the surface characterization of membranes by SEM, the result shows that as the content of poly(ionic liquid) increased, the surface will become more wrinkled and winding. From the LOI analysis, the result indicates the membrane has great thermal stability with LOI = 24%. The hybrid polymer electrolyte has high electrochemical window up to 5.2 V, and its ionic conductivity increased increases when the content of poly(ionic liquid) increased. For battery application, the capacities of the cell made of hybrid polymer electrolyte can be up to 152 mAh g-1 at 0.1 C and 78 mAh g-1 at 5 C. The advantageous properties of the polymer electrolyte membrane allow it to act as both an ionic conductor as well as a separator .