Zeitschriftenartikel zum Thema „Poly(2-Acrylamido-2-Méthylpropane sulfonate de sodium)“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Poly(2-Acrylamido-2-Méthylpropane sulfonate de sodium).

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-22 Zeitschriftenartikel für die Forschung zum Thema "Poly(2-Acrylamido-2-Méthylpropane sulfonate de sodium)" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Noor, Siti Aminah Mohd, Jiazeng Sun, Douglas R. MacFarlane, Michel Armand, Daniel Gunzelmann und Maria Forsyth. „Decoupled ion conduction in poly(2-acrylamido-2-methyl-1-propane-sulfonic acid) homopolymers“. J. Mater. Chem. A 2, Nr. 42 (2014): 17934–43. http://dx.doi.org/10.1039/c4ta03998j.

Der volle Inhalt der Quelle
Annotation:
A family of novel sulfonate based homopolymers has been prepared by partially replacing sodium cations with different types of ionic liquid ammonium counter-cations, leading to an increased degree of decoupling of the conductivity from the glass transition of the ionomers.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Su, Na. „Synthesis of Poly (2-Acrylamido-2-methylpropanesulfnoinc Salt) Modified Carbon Spheres“. Polymers 15, Nr. 17 (23.08.2023): 3510. http://dx.doi.org/10.3390/polym15173510.

Der volle Inhalt der Quelle
Annotation:
The paper reports a facile synthesis of novel anionic spherical polymer brushes which was based on grafting sodium 2-acrylamido-2-methylpropane-1-sulfonate from the surface of 4,4′-Azobis (4-cyanopentanoyl chloride)-modified carbon spheres. Various characterization methods involving a scanning electron microscope, energy dispersive X-ray spectroscopy, Fourier transform infrared spectrum, and thermo-gravimetric analysis were utilized to analyze the morphology, chemical composition, bonding structure, and thermal stability, respectively. The molecular weight (Mw) and polydispersity (Mw/Mn) of brushes were 616,000 g/mol and 1.72 determined by gel permeation chromatography experiments. Moreover, the dispersibility of ASPB in water and in the presence of aqueous NaCl solutions of different concentrations was investigated. Results show that the dispersibility of carbon spheres has been enhanced owing to grafted polyelectrolyte chains, while the zeta potential of the particle decreases and its brush layer shrinks upon exposure to sodium ions (Na+).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Emik, Serkan, und Gülten Gürdağ. „Synthesis and swelling behavior of thermosensitive poly(N-isopropyl acrylamide-co-sodium-2-acrylamido-2-methyl propane sulfonate) and poly(N-isopropyl acrylamide-co-sodium-2-acrylamido-2-methyl propane sulfonate-co-glycidyl methacrylate) hydrogels“. Journal of Applied Polymer Science 100, Nr. 1 (2006): 428–38. http://dx.doi.org/10.1002/app.23126.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Huglin, Malcolm B., Lee Webster und Ian D. Robb. „Complex formation between poly(4-vinylpyridinium chloride) and poly[sodium(2-acrylamido-2-methyl propane sulfonate)] in dilute aqueous solution“. Polymer 37, Nr. 7 (März 1996): 1211–15. http://dx.doi.org/10.1016/0032-3861(96)80848-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Jitreewas, Parinya, Suwicha Saengvattanarat, Phanita Tansiri, Siriporn Pranee, Sunanta Chuayprakong, Chalermchai Khemtong und Samitthichai Seeyangnok. „Synthesis of PAA-PAMPS-PNaSS Terpolymers as Ultraviolet-Tagged Scale Inhibitor for Industrial Water Cooling System“. Key Engineering Materials 757 (Oktober 2017): 68–72. http://dx.doi.org/10.4028/www.scientific.net/kem.757.68.

Der volle Inhalt der Quelle
Annotation:
Carboxylated polymer can be used as an anti-scaling agent in circulating water cooling systems. Poly(acrylic acid) and homopolymer have some drawbacks such as slight solubility in water and low calcium tolerance leading difficulty to determine the remaining quantity of polymer in water. This research is mainly focused on synthesis and ability of poly(acrylic acid-co-2-acrylamido-2-methylpropane sulfonic acid) (PAA-PAMPS) for scale inhibition. These terpolymers varied in mole ratios of monomers were prepared via solution polymerization. The obtained polymers are then characterized by FT-IR, 1H-NMR, TGA, turbidity, and UV-visible spectroscopy. For a scale inhibition test, GB/T 16632-2008 standard is applied. The scale inhibition efficiency for 100% was found in PAA-PAMPS copolymer (7:3). Afterwards this polymer was chosen for synthesizing an ultraviolet-tagged PAA-PAMPS-PNaSS terpolymer. UV-visible spectroscopy was used to monitor benzene sulfonate structure in sodium styrene sulfonate of the polymer chain at 224 nm.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Paneva, Dilyana, Laetitia Mespouille, Nevena Manolova, Philippe Degée, Iliya Rashkov und Philippe Dubois. „Comprehensive study on the formation of polyelectrolyte complexes from (quaternized) poly[2-(dimethylamino)ethyl methacrylate] and poly(2-acrylamido-2-methylpropane sodium sulfonate)“. Journal of Polymer Science Part A: Polymer Chemistry 44, Nr. 19 (21.08.2006): 5468–79. http://dx.doi.org/10.1002/pola.21594.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Gromadzki, Daniel, Alexey Tereshchenko und Ričardas Makuška. „Synthesis by self-condensing AGET ATRP and solution properties of arborescent poly(sodium 2-acrylamido-2-methyl-N-propane sulfonate)“. Polymer 51, Nr. 24 (November 2010): 5680–87. http://dx.doi.org/10.1016/j.polymer.2010.09.058.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Kapanya, Apichaya, Amlika Rungrod und Runglawan Somsunan. „Effect of Bacterial Cellulose on Silver-loaded Poly(sodium 2-acrylamido-2-methylpropane sulfonate) Hydrogel for Antibacterial Wound Dressing Application“. Fibers and Polymers 23, Nr. 12 (Dezember 2022): 3343–57. http://dx.doi.org/10.1007/s12221-022-4584-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Vijitha, Raagala, Kasula Nagaraja, Marlia M. Hanafiah, Kummara Madhusudana Rao, Katta Venkateswarlu, Sivarama Krishna Lakkaboyana und Kummari S. V. Krishna Rao. „Fabrication of Eco-Friendly Polyelectrolyte Membranes Based on Sulfonate Grafted Sodium Alginate for Drug Delivery, Toxic Metal Ion Removal and Fuel Cell Applications“. Polymers 13, Nr. 19 (27.09.2021): 3293. http://dx.doi.org/10.3390/polym13193293.

Der volle Inhalt der Quelle
Annotation:
Polyelectrolyte membranes (PEMs) are a novel type of material that is in high demand in health, energy and environmental sectors. If environmentally benign materials are created with biodegradable ones, PEMs can evolve into practical technology. In this work, we have fabricated environmentally safe and economic PEMs based on sulfonate grafted sodium alginate (SA) and poly(vinyl alcohol) (PVA). In the first step, 2-acrylamido-2-methyl-1-propanesulphonic acid (AMPS) and sodium 4-vinylbenzene sulfonate (SVBS) are grafted on to SA by utilizing the simple free radical polymerization technique. Graft copolymers (SA-g-AMPS and SA-g-SVBS) were characterized by 1H NMR, FTIR, XRD and DSC. In the second step, sulfonated SA was successfully blended with PVA to fabricate PEMs for the in vitro controlled release of 5-fluorouracil (anti-cancer drug) at pH 1.2 and 7.4 and to remove copper (II) ions from aqueous media. Moreover, phosphomolybdic acids (PMAs) incorporated with composite PEMs were developed to evaluate fuel cell characteristics, i.e., ion exchange capacity, oxidative stability, proton conductivity and methanol permeability. Fabricated PEMs are characterized by the FTIR, ATR-FTIR, XRD, SEM and EDAX. PMA was incorporated. PEMs demonstrated maximum encapsulation efficiency of 5FU, i.e., 78 ± 2.3%, and released the drug maximum in pH 7.4 buffer. The maximum Cu(II) removal was observed at 188.91 and 181.22 mg.g–1. PMA incorporated with PEMs exhibited significant proton conductivity (59.23 and 45.66 mS/cm) and low methanol permeability (2.19 and 2.04 × 10−6 cm2/s).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

El-Mahdy, Gamal, Ayman Atta und Hamad Al-Lohedan. „Synthesis and Evaluation of Poly(Sodium 2-Acrylamido-2-Methylpropane Sulfonate-co-Styrene)/Magnetite Nanoparticle Composites as Corrosion Inhibitors for Steel“. Molecules 19, Nr. 2 (30.01.2014): 1713–31. http://dx.doi.org/10.3390/molecules19021713.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Kakihana, Yuriko, N. Awanis Hashim, Taiko Mizuno, Marika Anno und Mitsuru Higa. „Ionic Transport Properties of Cation-Exchange Membranes Prepared from Poly(vinyl alcohol-b-sodium Styrene Sulfonate)“. Membranes 11, Nr. 6 (19.06.2021): 452. http://dx.doi.org/10.3390/membranes11060452.

Der volle Inhalt der Quelle
Annotation:
Membrane resistance and permselectivity for counter-ions have important roles in determining the performance of cation-exchange membranes (CEMs). In this study, PVA-based polyanions—poly(vinyl alcohol-b-sodium styrene sulfonate)—were synthesized, changing the molar percentages CCEG of the cation-exchange groups with respect to the vinyl alcohol groups. From the block copolymer, poly(vinyl alcohol) (PVA)-based CEMs, hereafter called “B-CEMs”, were prepared by crosslinking the PVA chains with glutaraldehyde (GA) solution at various GA concentrations CGA. The ionic transport properties of the B-CEMs were compared with those previously reported for the CEMs prepared using a random copolymer—poly(vinyl alcohol-co-2-acrylamido-2-methylpropane sulfonic acid)—hereafter called ”R-CEMs”. The B-CEMs had lower water content than the R-CEMs at equal molar percentages of the cation-exchange groups. The charge density of the B-CEMs increased as CCEG increased, and reached a maximum value, which increased with increasing CGA. A maximum charge density of 1.47 mol/dm3 was obtained for a B-CEM with CCEG = 2.9 mol% and CGA = 0.10 vol.%, indicating that the B-CEM had almost two-thirds of the permselectivity of a commercial CEM (CMX: ASTOM Corp. Japan). The dynamic transport number and membrane resistance of a B-CEM with CCEG = 8.3 mol% and CGA = 0.10 vol.% were 0.99 and 1.6 Ωcm2, respectively. The B-CEM showed higher dynamic transport numbers than those of the R-CEMs with similar membrane resistances.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Clara, I., und N. Natchimuthu. „Hydrogels based on starch-g-poly(sodium-2-acrylamido-2-methyl-1-propane sulfonate-co-methacrylic acid) as controlled drug delivery systems“. Starch - Stärke 69, Nr. 7-8 (05.10.2016): 1600177. http://dx.doi.org/10.1002/star.201600177.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Wu, Xiaogang, Chuanrong Zhong, Xiaofei Lian und Yan Yang. „Solution properties and aggregating structures for a fluorine-containing polymeric surfactant with a poly(ethylene oxide) macro-monomer“. Royal Society Open Science 5, Nr. 8 (August 2018): 180610. http://dx.doi.org/10.1098/rsos.180610.

Der volle Inhalt der Quelle
Annotation:
A polymeric surfactant (PFSA) was synthesized by the aqueous free-radical copolymerization using acrylamide, sodium 2-acrylamido-2-methylpropane sulfonate, allyl-capped octylphenoxy poly(ethylene oxide) (PEO) with the polymerization degree of 20 (AOP) and 1H,1H,2H,2H-perfluoro-1-decyl p -vinylbenzyl ether (VF). PFSA exhibited both the good surface and interfacial activities and the thickening behaviour. It could be used in enhanced oil recovery to increase both sweep and oil displacement efficiencies. The critical micelle concentration (CMC) of PFSA was 0.1 g l −1 in aqueous solution. The spherical micelles with the diameter of 100 nm were formed at CMC, and numerous compact worm-shaped micelles were observed above CMC. The interfacial tension was 0.027 mN m −1 for the 0.1 g l −1 PFSA solution containing 5 g l −1 NaCl and 0.209 g l −1 SDBS. The PFSA solutions still showed low interfacial tensions at high NaCl concentrations and temperatures, respectively, because of the incorporation of both VF and AOP containing long PEO.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Long, Shijun, Chang Liu, Han Ren, Yali Hu, Chao Chen, Yiwan Huang und Xuefeng Li. „NIR-Mediated Deformation from a CNT-Based Bilayer Hydrogel“. Polymers 16, Nr. 8 (19.04.2024): 1152. http://dx.doi.org/10.3390/polym16081152.

Der volle Inhalt der Quelle
Annotation:
Shape-shifting polymers are widely used in various fields such as intelligent switches, soft robots and sensors, which require both multiple stimulus-response functions and qualified mechanical strength. In this study, a novel near-infrared-light (NIR)-responsible shape-shifting hydrogel system was designed and fabricated through embedding vinylsilane-modified carbon nanotubes (CNTs) into particle double-network (P-DN) hydrogels by micellar copolymerisation. The dispersed brittle Poly(sodium 2-acrylamido-2-methylpropane-1-sulfonate) (PNaAMPS) network of the microgels can serve as sacrificial bonds to toughen the hydrogels, and the CNTs endow it with NIR photothermal conversion ability. The results show that the CNTs embedded in the P-DN hydrogels present excellent mechanical strength, i.e., a fracture strength of 312 kPa and a fracture strain of 357%. Moreover, an asymmetric bilayer hydrogel, where the active layer contains CNTs, can achieve 0°–110° bending deformation within 10 min under NIR irradiation and can realise complex deformation movement. This study provides a theoretical and experimental basis for the design and manufacture of photoresponsive soft actuators.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Urbano, Bruno, und Bernabé L. Rivas. „Poly(sodium 4-styrene sulfonate) and poly(2-acrylamido glycolic acid) polymer-clay ion exchange resins with enhanced mechanical properties and metal ion retention“. Polymer International 61, Nr. 1 (03.10.2011): 23–29. http://dx.doi.org/10.1002/pi.3178.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Paneva, Dilyana, Laetitia Mespouille, Nevena Manolova, Philippe Degée, Iliya Rashkov und Philippe Dubois. „Preparation of Well-Defined Poly[(ethylene oxide)-block-(sodium 2-acrylamido-2-methyl-1-propane sulfonate)] Diblock Copolymers by Water-Based Atom Transfer Radical Polymerization“. Macromolecular Rapid Communications 27, Nr. 17 (04.09.2006): 1489–94. http://dx.doi.org/10.1002/marc.200600389.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Paneva, Dilyana, Laetitia Mespouille, Nevena Manolova, Philippe Degée, Iliya Rashkov und Philippe Dubois. „Preparation of Well-Defined Poly[(ethylene oxide)-block-(sodium 2-acrylamido-2-methyl-1-propane sulfonate)] Diblock Copolymers by Water-Based Atom Transfer Radical Polymerization“. Macromolecular Rapid Communications 28, Nr. 23 (20.11.2007): 2277. http://dx.doi.org/10.1002/marc.200700758.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Bastakoti, Bishnu Prasad, Sudhina Guragain, Airi Yoneda, Yuuichi Yokoyama, Shin-ichi Yusa und Kenichi Nakashima. „Micelle formation of poly(ethylene oxide-b-sodium 2-(acrylamido)-2-methyl-1-propane sulfonate-b-styrene) and its interaction with dodecyl trimethyl ammonium chloride and dibucaine“. Polym. Chem. 1, Nr. 3 (2010): 347–53. http://dx.doi.org/10.1039/b9py00231f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Sánchez, Julio, Carol Rodriguez, Estefanía Oyarce und Bernabé L. Rivas. „Removal of chromium ions by functional polymers in conjunction with ultrafiltration membranes“. Pure and Applied Chemistry 92, Nr. 6 (25.06.2020): 883–96. http://dx.doi.org/10.1515/pac-2019-1103.

Der volle Inhalt der Quelle
Annotation:
AbstractIn the current research water-soluble functional polymers (WSFP) were prepared via radical polymerization and purified by fractionation through ultrafiltration membranes with different molecular weights cut off (MWCO) of 30 and 100 kDa. The WSFPs were poly(3-acrylamide propyl) trimethyl ammonium chloride, P(ClAPTA), poly(2-acrylamido-2-methyl-1-propane sodium sulfonate, P(AMPSNa), and poly(3-methacrylamino propyl) dimethyl 3-sulfopropyl ammonium hydroxide, P(HMPDSPA). These polymers were characterized by Fourier transformed infrared spectroscopy (FT-IR) and thermogravimetry analysis (TGA). Using liquid-phase polymer-based retention technique (LPR), chromium [Cr(III) and Cr(VI)] retention was studied as a function of pH, polymer and chromium concentration, selectivity, maximum retention capacity, chromium elution capacity, and polymer regeneration through sorption and desorption studies. Results of FT-IR showed the characteristic absorption bands of the synthesized polymers. The decomposition temperatures of P(ClAPTA) were at 303.1 °C, and for P(AMPSNa) three decompositions temperatures were registered at 190.5 °C, 223.2 °C, and 304.8 °C. P(HMPDSPA) presented two important decomposition temperatures at 292.4 °C and 391.7 °C, respectively. Concerning to the retention of Cr(VI), it was maximal (100 %) when P(ClAPTA) was studied at pH 6. The maximum retention of Cr(III) (100 %) was achieved by P(AMPSNa) at pH 3. The optimum polymer:Cr mole ratio obtained was 10:1 for both Cr(VI) and Cr(III). The retention of Cr(VI) decreased due to the presence of interfering ions, and the hydrodynamic flow was almost constant during the ultrafiltration of polymer-Cr macromolecule.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Vijitha, Raagala, Nagella Sivagangi Reddy, Kasula Nagaraja, Tiruchuru J. Sudha Vani, Marlia M. Hanafiah, Katta Venkateswarlu, Sivarama Krishna Lakkaboyana, Kummari S. V. Krishna Rao und Kummara Madhususdana Rao. „Fabrication of Polyelectrolyte Membranes of Pectin Graft-Copolymers with PVA and Their Composites with Phosphomolybdic Acid for Drug Delivery, Toxic Metal Ion Removal, and Fuel Cell Applications“. Membranes 11, Nr. 10 (18.10.2021): 792. http://dx.doi.org/10.3390/membranes11100792.

Der volle Inhalt der Quelle
Annotation:
In this study, a simple method for the fabrication of highly diffusive, adsorptive and conductive eco-friendly polyelectrolyte membranes (PEMs) with sulfonate functionalized pectin and poly(vinyl alcohol)(PVA) was established. The graft-copolymers were synthesized by employing the use of potassium persulfate as a free radical initiator from pectin (PC), a carbohydrate polymer with 2-acrylamido-2-methyl-1-propanesulphonic acid (AMPS) and sodium 4-vinylbenzene sulphonate (SVBS). The PEMs were fabricated from the blends of pectin graft-copolymers (PC-g-AMPS and PC-g-SVBS) and PVA by using a solution casting method, followed by chemical crosslinking with glutaraldehyde. The composite PEMs were fabricated by mixing phosphomolybdic acid with the aforementioned blends. The PEMs were successfully characterized by FTIR, XRD, SEM, and EDAX studies. They were assessed for the controlled release of an anti-cancer drug (5-fluorouracil) and the removal of toxic metal ions (Cu2+) from aqueous media. Furthermore, the composite PEMs were evaluated for fuel cell application. The 5-fluorouracil release capacity of the PEMs was found to be 93% and 99.1% at 300 min in a phosphate buffer solution (pH = 7.4). The highest Cu2+ removal was observed at 206.7 and 190.1 mg/g. The phosphomolybdic acid-embedded PEMs showed superior methanol permeability, i.e., 6.83 × 10−5, and 5.94 × 10−5, compared to the pristine PEMs. Furthermore, the same trend was observed for the proton conductivities, i.e., 13.77 × 10−3, and 18.6 × 10−3 S/cm at 30 °C.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Wang, Zhulun, Jian Wang, Benjamin Chu und Dennis G. Peiffer. „Solution behavior of random copolymers of styrene with sodium-2-acrylamido-2-methylpropane sulfonate“. Journal of Polymer Science Part B: Polymer Physics 29, Nr. 11 (Oktober 1991): 1361–71. http://dx.doi.org/10.1002/polb.1991.090291105.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Suzuki, Noriyuki, Ken Watanabe, Chirika Takahashi, Yuko Takeoka und Masahiro Rikukawa. „Ruthenium-Catalyzed Olefin Metathesis In Water using Thermo-Responsive Diblock Copolymer Micelles“. Current Organic Chemistry 27 (11.09.2023). http://dx.doi.org/10.2174/1385272827666230911115809.

Der volle Inhalt der Quelle
Annotation:
Abstract: Ruthenium-catalyzed olefin metathesis reactions were conducted in water with thermo-responsive block copolymers forming micelles. The block copolymers were prepared by living radical polymerization and consisted of a thermo-responsive and hydrophilic segments. The former segment included poly(N-isopropylacrylamide) or poly(N,N-diethylacrylamide), and the latter poly(sodium 4-styrene sulfonate), poly(sodium 2-acrylamido-2-methylpropanesulfonate) or poly(ethylene glycol). Homometathesis, cross-metathesis and ring-closing metathesis reactions proceeded to afford the products in moderate to good yields. Extraction efficiency from the reaction mixture was also studied.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie