Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Polar dielectric liquids“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Polar dielectric liquids" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Polar dielectric liquids"
Tabassum, Shagufta, und V. P. Pawar. „Complex permittivity spectra of binary polar liquids using time domain reflectometry“. Journal of Advanced Dielectrics 08, Nr. 03 (Juni 2018): 1850019. http://dx.doi.org/10.1142/s2010135x18500194.
Der volle Inhalt der QuelleMonder, Hila, Leo Bielenki, Hanna Dodiuk, Anna Dotan und Samuel Kenig. „Poly (Dimethylsiloxane) Coating for Repellency of Polar and Non-Polar Liquids“. Polymers 12, Nr. 10 (21.10.2020): 2423. http://dx.doi.org/10.3390/polym12102423.
Der volle Inhalt der QuelleUseinova, S. „Application of the Variational Method in Studying of Polar Liquids and Their Concentrated Solutions“. Bulletin of Science and Practice, Nr. 12 (15.12.2022): 20–27. http://dx.doi.org/10.33619/2414-2948/85/02.
Der volle Inhalt der Quellede Souza, J. Pedro, Alexei A. Kornyshev und Martin Z. Bazant. „Polar liquids at charged interfaces: A dipolar shell theory“. Journal of Chemical Physics 156, Nr. 24 (28.06.2022): 244705. http://dx.doi.org/10.1063/5.0096439.
Der volle Inhalt der QuelleChandra, Amalendu, und Biman Bagchi. „Exotic dielectric behavior of polar liquids“. Journal of Chemical Physics 91, Nr. 5 (September 1989): 3056–60. http://dx.doi.org/10.1063/1.456927.
Der volle Inhalt der QuelleMatyushov, Dmitry V. „Nonlinear dielectric response of polar liquids“. Journal of Chemical Physics 142, Nr. 24 (28.06.2015): 244502. http://dx.doi.org/10.1063/1.4922933.
Der volle Inhalt der QuelleWoisetschläger, Jakob, Adam D. Wexler, Gert Holler, Mathias Eisenhut, Karl Gatterer und Elmar C. Fuchs. „Horizontal bridges in polar dielectric liquids“. Experiments in Fluids 52, Nr. 1 (16.10.2011): 193–205. http://dx.doi.org/10.1007/s00348-011-1216-x.
Der volle Inhalt der Quelledel Castillo, L. F., L. A. Dávalos-Orozco und L. S. Garcı́a-Colı́n. „Ultrafast dielectric relaxation response of polar liquids“. Journal of Chemical Physics 106, Nr. 6 (08.02.1997): 2348–54. http://dx.doi.org/10.1063/1.473789.
Der volle Inhalt der QuelleKalmykov, Yurii P. „Dielectric relaxation in solutions of polar liquids“. Journal of Molecular Liquids 49 (September 1991): 201–7. http://dx.doi.org/10.1016/0167-7322(91)80077-h.
Der volle Inhalt der QuelleChaube, Hemantkumar A., und Vipinchandra A. Rana. „Dielectric and Electrical Properties of Binary Mixtures of Anisole and Some Primary Alcohols in the Frequency Range 20 Hz to 2 MHz“. Advanced Materials Research 665 (Februar 2013): 194–201. http://dx.doi.org/10.4028/www.scientific.net/amr.665.194.
Der volle Inhalt der QuelleDissertationen zum Thema "Polar dielectric liquids"
Basak, Rabindra Chandra. „Dielectric behaviour of some polar liquids under high frequency electric field“. Thesis, University of North Bengal, 2000. http://hdl.handle.net/123456789/643.
Der volle Inhalt der QuelleSaha, Ujjwal. „Dielectric relaxation parameters of polar liquids from ultra-high frequency conductivity of solutes in non-polar solvents“. Thesis, University of North Bengal, 1993. http://hdl.handle.net/123456789/660.
Der volle Inhalt der QuelleHunger, Johannes. „Effects of polar compounds on the dynamics and dielectric properties of room-temperature ionic liquids“. kostenfrei, 2009. http://epub.uni-regensburg.de/11973/.
Der volle Inhalt der QuelleAgapov, Alexander. „Decoupling Phenomena in Dynamics of Soft Matter“. University of Akron / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=akron1321922264.
Der volle Inhalt der QuelleКоробко, Олександр Анатолійович. „Удосконалення резонансного діелькометричного методу контролю та визначення вологості рідких неполярних діелектриків“. Thesis, Національний технічний університет "Харківський політехнічний інститут", 2019. http://repository.kpi.kharkov.ua/handle/KhPI-Press/40781.
Der volle Inhalt der QuelleThesis for a candidate degree (PhD) in specialty 05.11.13 "Instruments and methods of control and determination of substances" (15 – Automation and Instrumentation) − National Technical University "Kharkiv Polytechnic Institute". The thesis is devoted to the improvement of the resonant dielectric method of monitoring and determining the humidity of emulsions such as liquid non-polar dielectric - water in order to increase its sensitivity to level 10⁻⁵ while simultaneously minimizing the type and grade of non-polar dielectric ("varietal uncertainty") on the measurement results. An analytical review and analysis of the existing methods and means of implementation of the dielectric method in general and its resonant variety has been carried out. The main research areas have been identified: development of a simplified emulsion model; development of new varieties of the resonant dielectric method with minimization of the effect of "varietal uncertainty" for measuring humidity at a level of 10⁻⁵; development of a new type of distributed transducer. A simplified emulsion model was chosen based on the Kok artificial dielectric model, its applications were determined by frequency, humidity, and the values of its systematic errors were determined. New multifrequency varieties of the resonant dielectric method have been developed based on the proposed mathematical model of the emulsion, taking into account the parasitic capacitances of the measuring generator and the measuring converter. Metrological characteristics of the generalized four-frequency method and its simplified three-and two-frequency varieties are obtained. The areas of applicability of multifrequency methods are analyzed and their systematic errors are determined. The most sensitive method, the two-frequency method, was determined, the effect of dielectric losses in water was analyzed for it, and the generation frequency of the measuring generator, which corresponds to its maximum sensitivity, 100 MHz, was determined. A new type of distributed-type measuring transducer is proposed for the practical implementation of the two-frequency method — a stepwise heterogeneous coaxial resonator; its theoretical and experimental studies are carried out; its advantages in relation to the known transducers are determined. A hygrometer of the mid-frequency range based on a concentrated-type capacitive transducer and a hydrometer of a very high-frequency range based on a stepped heterogeneous coaxial resonator have been developed. The circuit solutions of the measuring transducer and the measuring generator of the hygrometer of the midfrequency range, which provided the minimum values of their parasitic capacitances, were developed and implemented. The circuit solutions of the measuring transducer and the measuring generator of a hygrometer of a very high frequency range have been developed and implemented, which provided almost zero effect of their parasitic capacitances. A methodology has been developed for conducting experimental research on the implementation of four- and three-frequency methods using a mid-range moisture meter and implementing a two-frequency method and a simplified version of it using a very high-frequency moisture meter. Experimental studies on manufactured test emulsions, as well as analysis and processing of their results, were carried out. For all developed multi-frequency methods and moisture values of test emulsions in the range of 10⁻⁴ – 10⁻², the value of the relative extended uncertainty of moisture measurement did not exceed 5.28 %. For the humidity of the test emulsion 10⁻⁵, the value of this uncertainty did not exceed 10.39 % (due to the lack of stability of the frequency of the reference generator frequency Ch 3 - 34, which was used in the research). The developed improved multi-frequency resonance dielectric methods for determining humidity have increased the sensitivity to a level of 10⁻⁵ while minimizing "varietal uncertainty".
Коробко, Олександр Анатолійович. „Удосконалення резонансного діелькометричного методу контролю та визначення вологості рідких неполярних діелектриків“. Thesis, Національний технічний університет "Харківський політехнічний інститут", 2018. http://repository.kpi.kharkov.ua/handle/KhPI-Press/40783.
Der volle Inhalt der QuelleThesis for a candidate degree (PhD) in specialty 05.11.13 "Instruments and methods of control and determination of substances" (15 – Automation and Instrumentation) − National Technical University "Kharkiv Polytechnic Institute". The thesis is devoted to the improvement of the resonant dielectric method of monitoring and determining the humidity of emulsions such as liquid non-polar dielectric - water in order to increase its sensitivity to level 10⁻⁵ while simultaneously minimizing the type and grade of non-polar dielectric ("varietal uncertainty") on the measurement results. An analytical review and analysis of the existing methods and means of implementation of the dielectric method in general and its resonant variety has been carried out. The main research areas have been identified: development of a simplified emulsion model; development of new varieties of the resonant dielectric method with minimization of the effect of "varietal uncertainty" for measuring humidity at a level of 10⁻⁵; development of a new type of distributed transducer. A simplified emulsion model was chosen based on the Kok artificial dielectric model, its applications were determined by frequency, humidity, and the values of its systematic errors were determined. New multifrequency varieties of the resonant dielectric method have been developed based on the proposed mathematical model of the emulsion, taking into account the parasitic capacitances of the measuring generator and the measuring converter. Metrological characteristics of the generalized four-frequency method and its simplified three-and two-frequency varieties are obtained. The areas of applicability of multifrequency methods are analyzed and their systematic errors are determined. The most sensitive method, the two-frequency method, was determined, the effect of dielectric losses in water was analyzed for it, and the generation frequency of the measuring generator, which corresponds to its maximum sensitivity, 100 MHz, was determined. A new type of distributed-type measuring transducer is proposed for the practical implementation of the two-frequency method — a stepwise heterogeneous coaxial resonator; its theoretical and experimental studies are carried out; its advantages in relation to the known transducers are determined. A hygrometer of the mid-frequency range based on a concentrated-type capacitive transducer and a hydrometer of a very high-frequency range based on a stepped heterogeneous coaxial resonator have been developed. The circuit solutions of the measuring transducer and the measuring generator of the hygrometer of the midfrequency range, which provided the minimum values of their parasitic capacitances, were developed and implemented. The circuit solutions of the measuring transducer and the measuring generator of a hygrometer of a very high frequency range have been developed and implemented, which provided almost zero effect of their parasitic capacitances. A methodology has been developed for conducting experimental research on the implementation of four- and three-frequency methods using a mid-range moisture meter and implementing a two-frequency method and a simplified version of it using a very high-frequency moisture meter. Experimental studies on manufactured test emulsions, as well as analysis and processing of their results, were carried out. For all developed multi-frequency methods and moisture values of test emulsions in the range of 10⁻⁴ – 10⁻², the value of the relative extended uncertainty of moisture measurement did not exceed 5.28 %. For the humidity of the test emulsion 10⁻⁵, the value of this uncertainty did not exceed 10.39 % (due to the lack of stability of the frequency of the reference generator frequency Ch 3 - 34, which was used in the research). The developed improved multi-frequency resonance dielectric methods for determining humidity have increased the sensitivity to a level of 10⁻⁵ while minimizing "varietal uncertainty".
Hunger, Johannes [Verfasser]. „Effects of polar compounds on the dynamics and dielectric properties of room-temperature ionic liquids / vorgelegt von Johannes Hunger“. 2009. http://d-nb.info/1001182146/34.
Der volle Inhalt der QuelleBuchteile zum Thema "Polar dielectric liquids"
Matyushov, Dmitry V. „Nonlinear Dielectric Response of Polar Liquids“. In Advances in Dielectrics, 1–34. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77574-6_1.
Der volle Inhalt der QuelleHefter, Glenn, Richard Buchner, Johannes Hunger und Alexander Stoppa. „Chemical Speciation in Ionic Liquids and their Mixtures with Polar Solvents Using Dielectric Spectroscopy“. In ACS Symposium Series, 61–74. Washington DC: American Chemical Society, 2009. http://dx.doi.org/10.1021/bk-2009-1030.ch004.
Der volle Inhalt der QuelleForcada, M. L., A. Gras-Martí, N. R. Arista, H. M. Urbassek und R. Garcia-Molina. „Interaction of a Charged Particle With a Semi Infinite Non Polar Dielectric Liquid“. In Interaction of Charged Particles with Solids and Surfaces, 639–45. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-8026-9_38.
Der volle Inhalt der QuelleMehrotra, Suresh, Ashok Kumbharkhane und Ajay Chaudhari. „Structural Investigation of Biomolecules Through Dielectric Parameters“. In Binary Polar Liquids, 403–27. Elsevier, 2017. http://dx.doi.org/10.1016/b978-0-12-813253-1.00009-4.
Der volle Inhalt der QuelleMehrotra, Suresh, Ashok Kumbharkhane und Ajay Chaudhari. „Dielectric Spectroscopic Study of Molecular Interaction Between Nitriles With Water and Alcohol“. In Binary Polar Liquids, 215–48. Elsevier, 2017. http://dx.doi.org/10.1016/b978-0-12-813253-1.00005-7.
Der volle Inhalt der QuelleMehrotra, Suresh, Ashok Kumbharkhane und Ajay Chaudhari. „Dielectric Relaxation and Molecular Dynamics in Associating Dipolar Liquids and Polyhydroxyl Polymers“. In Binary Polar Liquids, 383–402. Elsevier, 2017. http://dx.doi.org/10.1016/b978-0-12-813253-1.00008-2.
Der volle Inhalt der QuelleMehrotra, Suresh, Ashok Kumbharkhane und Ajay Chaudhari. „Dielectric Relaxation in Binary Polar Liquids Containing Alcohols and Molecules With –OH Group“. In Binary Polar Liquids, 45–72. Elsevier, 2017. http://dx.doi.org/10.1016/b978-0-12-813253-1.00002-1.
Der volle Inhalt der QuelleChipperfield, John R. „Some molecular solvents“. In Non-Aqueous Solvents. Oxford University Press, 1999. http://dx.doi.org/10.1093/hesc/9780198502593.003.0003.
Der volle Inhalt der QuelleHunda, Li, M. A. Kazaryan und I. V. Shamanin. „Periodic action of electric and magnetic fields on the electrically isolated salt solution in polar dielectric liquids“. In Electroinduced Drift of Neutral Charge Clusters in Salt Solutions, 1–50. CRC Press, 2020. http://dx.doi.org/10.1201/9781003047049-1.
Der volle Inhalt der Quelle„Liquid Crystals“. In Polar Dielectrics and Their Applications, 403–30. University of California Press, 2023. http://dx.doi.org/10.2307/jj.5233071.21.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Polar dielectric liquids"
Maharolkar, Aruna P., A. Murugkar und P. W. Khirade. „Microwave dielectric study of polar liquids at 298 K“. In 2ND INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5032334.
Der volle Inhalt der QuellePawar, V. P., Shagufta Tabassum und A. V. Patil. „Structural properties in binary mixtures of polar molecules through microwave dielectric technique“. In 2017 IEEE 19th International Conference on Dielectric Liquids (ICDL). IEEE, 2017. http://dx.doi.org/10.1109/icdl.2017.8124634.
Der volle Inhalt der QuelleCocks, Daniel G., und Ron D. White. „Excitation processes as a pathway for electron solvation in non-polar liquids“. In 2019 IEEE 20th International Conference on Dielectric Liquids (ICDL). IEEE, 2019. http://dx.doi.org/10.1109/icdl.2019.8796510.
Der volle Inhalt der QuelleMaharolkar, Aruna P., A. Murugkar und P. W. Khirade. „Microwave dielectric polarization study of polar liquids at 298 K“. In 3RD INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC-2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0001553.
Der volle Inhalt der QuelleGhanadzadeh, A., A. Ranjkesh, H. Ghanadzadeh und M. M. Moghadam. „Dielectric study and molecular interaction of halogenated compounds in non-polar solvent at different temperatures“. In 2008 IEEE International Conference on Dielectric Liquids (ICDL 2008). IEEE, 2008. http://dx.doi.org/10.1109/icdl.2008.4622501.
Der volle Inhalt der QuelleSchmidt, Werner F., George Bakale, Alexey Khrapak und Katsumi Yoshino. „Drift velocity of ions and electrons in non-polar dielectric liquids at high electric field strengths“. In 2011 IEEE 17th International Conference on Dielectric Liquids (ICDL). IEEE, 2011. http://dx.doi.org/10.1109/icdl.2011.6015493.
Der volle Inhalt der QuelleLadanyi, Branka M., und Baw-Ching Perng. „Computer simulation of wavevector-dependent dielectric properties of polar and nondipolar liquids“. In SIMULATION AND THEORY OF ELECTROSTATIC INTERACTIONS IN SOLUTION. ASCE, 1999. http://dx.doi.org/10.1063/1.1301531.
Der volle Inhalt der QuelleSun, Yiwen, und Emma Pickwell-MacPherson. „Probing dielectric relaxation models of polar liquids using terahertz time-domain pulsed spectroscopy“. In 2010 35th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2010). IEEE, 2010. http://dx.doi.org/10.1109/icimw.2010.5612744.
Der volle Inhalt der QuelleShamanin, Igor V., Mishik A. Kazaryan und Victor I. Sachkov. „Structure of salts solution in polar dielectric liquids and electrically induced separation of solvated ions“. In XII International Conference on Atomic and Molecular Pulsed Lasers, herausgegeben von Victor F. Tarasenko und Andrey M. Kabanov. SPIE, 2015. http://dx.doi.org/10.1117/12.2225223.
Der volle Inhalt der QuelleGritsenko, Ivanovich M., und Sergey I. Kucheev. „Polar-dependent deformation of director near the dielectric pore in the metal-dielectric-nematic-metal structure“. In Liquid Crystals, herausgegeben von Jolanta Rutkowska, Stanislaw J. Klosowicz, Jerzy Zielinski und Jozef Zmija. SPIE, 1998. http://dx.doi.org/10.1117/12.299979.
Der volle Inhalt der Quelle