Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Poisson log-normal model“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Poisson log-normal model" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Poisson log-normal model"
Trinh, Giang, Cam Rungie, Malcolm Wright, Carl Driesener und John Dawes. „Predicting future purchases with the Poisson log-normal model“. Marketing Letters 25, Nr. 2 (03.08.2013): 219–34. http://dx.doi.org/10.1007/s11002-013-9254-1.
Der volle Inhalt der QuelleGallopin, Mélina, Andrea Rau und Florence Jaffrézic. „A Hierarchical Poisson Log-Normal Model for Network Inference from RNA Sequencing Data“. PLoS ONE 8, Nr. 10 (17.10.2013): e77503. http://dx.doi.org/10.1371/journal.pone.0077503.
Der volle Inhalt der QuellePescim, Rodrigo R., Edwin M. M. Ortega, Adriano K. Suzuki, Vicente G. Cancho und Gauss M. Cordeiro. „A new destructive Poisson odd log-logistic generalized half-normal cure rate model“. Communications in Statistics - Theory and Methods 48, Nr. 9 (27.04.2018): 2113–28. http://dx.doi.org/10.1080/03610926.2018.1459709.
Der volle Inhalt der QuelleSileshi, G. „Selecting the right statistical model for analysis of insect count data by using information theoretic measures“. Bulletin of Entomological Research 96, Nr. 5 (Oktober 2006): 479–88. http://dx.doi.org/10.1079/ber2006449.
Der volle Inhalt der QuelleChoi, Yoonha, Marc Coram, Jie Peng und Hua Tang. „A Poisson Log-Normal Model for Constructing Gene Covariation Network Using RNA-seq Data“. Journal of Computational Biology 24, Nr. 7 (Juli 2017): 721–31. http://dx.doi.org/10.1089/cmb.2017.0053.
Der volle Inhalt der QuelleSunandi, Etis, Khairil Anwar Notodiputro und Bagus Sartono. „A STUDY OF GENERALIZED LINEAR MIXED MODEL FOR COUNT DATA USING HIERARCHICAL BAYES METHOD“. MEDIA STATISTIKA 14, Nr. 2 (12.12.2021): 194–205. http://dx.doi.org/10.14710/medstat.14.2.194-205.
Der volle Inhalt der QuelleOflaz, Zarina Nukeshtayeva, Ceylan Yozgatligil und A. Sevtap Selcuk-Kestel. „AGGREGATE CLAIM ESTIMATION USING BIVARIATE HIDDEN MARKOV MODEL“. ASTIN Bulletin 49, Nr. 1 (29.11.2018): 189–215. http://dx.doi.org/10.1017/asb.2018.29.
Der volle Inhalt der QuelleMielenz, Norbert, Joachim Spilke und Eberhard von Borell. „Analysis of correlated count data using generalised linear mixed models exemplified by field data on aggressive behaviour of boars“. Archives Animal Breeding 57, Nr. 1 (29.01.2015): 1–19. http://dx.doi.org/10.5194/aab-57-26-2015.
Der volle Inhalt der QuelleMielenz, Norbert, Joachim Spilke und Eberhard von Borell. „Analysis of correlated count data using generalised linear mixed models exemplified by field data on aggressive behaviour of boars“. Archives Animal Breeding 57, Nr. 1 (29.01.2015): 1–19. http://dx.doi.org/10.7482/0003-9438-57-026.
Der volle Inhalt der QuelleKunakh, O. N., S. S. Kramarenko, A. V. Zhukov, A. S. Kramarenko und N. V. Yorkina. „Fitting competing models and evaluation of model parameters of the abundance distribution of the land snail Vallonia pulchella (Pulmonata, Valloniidae)“. Regulatory Mechanisms in Biosystems 9, Nr. 2 (25.04.2018): 198–202. http://dx.doi.org/10.15421/021829.
Der volle Inhalt der QuelleDissertationen zum Thema "Poisson log-normal model"
Batardière, Bastien. „Machine learning for multivariate analysis of high-dimensional count data“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM047.
Der volle Inhalt der QuelleThis thesis deals with the modeling and analysis of high-dimensional count data through the framework of latent variable models, as well as the optimization of such models. Latent variable models have demonstrated their efficacy in modeling count data with complex dependency structures, with the Poisson Log-Normal (PLN) model serving as a prime example. However, the PLN model does not meet the characteristics of real-world count datasets, primarily due to its inability to produce a high number of zeros. We propose the Zero-Inflated PLN (ZIPLN) extension to meet these characteristics. The latter and other variants of PLN are implemented in a Python package using variational inference to maximize the log-likelihood. In the second part, we focus on the finite-sum maximization problem, a common challenge when optimizing a wide range of latent variable models. We introduce an adaptive method named AdaLVR, scaling effectively with both the dimensionality and the sample size of the dataset, designed explicitly for this finite-sum optimization problem. A theoretical analysis of AdaLVR is conducted, and the convergence rate of O(T ⁻¹) is obtained in the convex setting, where T denotes the number of iterations. In the third part, we discuss the optimization of latent variable models using Monte Carlo methods, with a particular emphasis on the PLN model. The optimization occurs in a non-convex setting and necessitates the computation of the gradient, which is expressed as an intractable integral. In this context, we propose a first-order algorithm where the gradient is estimated using self-normalized importance sampling. Convergence guarantees are obtained under certain easily verifiable assumptions despite the inherent bias in the gradient estimator. Importantly, the applicability of the convergence theorem extends beyond the scope of optimization in latent variable models. In the fourth part, we focus on the implementation of the inference for PLN models, with a particular emphasis on the details of variational inference designed for these models. In the appendix, we derive confidence intervals for the PLN model, and an extension to the ZIPLN model, integrating Principal Component Analysis, is proposed. A semi-parametric approach is also introduced. Concurrently, an analysis of a real-world genomic dataset is conducted, revealing how different types of cells in plant leaves respond to a bacterial pathogen
El-Khatib, Mayar. „Highway Development Decision-Making Under Uncertainty: Analysis, Critique and Advancement“. Thesis, 2010. http://hdl.handle.net/10012/5741.
Der volle Inhalt der QuelleBuchteile zum Thema "Poisson log-normal model"
Dean, C. B. „Estimating equations for mixed Poisson models“. In Estimating Functions, 35–46. Oxford University PressOxford, 1991. http://dx.doi.org/10.1093/oso/9780198522287.003.0003.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Poisson log-normal model"
Goldasteh, Iman, Goodarz Ahmadi und Andrea Ferro. „Monte Carlo Simulations of Micro-Particle Detachment and Resuspension From Surfaces in Turbulent Flows“. In ASME 2012 Fluids Engineering Division Summer Meeting collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/fedsm2012-72148.
Der volle Inhalt der Quelle