Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Poisson distribution“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Poisson distribution" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Poisson distribution"
Loukas, Sotirios, und H. Papageorgiou. „On a trivariate Poisson distribution“. Applications of Mathematics 36, Nr. 6 (1991): 432–39. http://dx.doi.org/10.21136/am.1991.104480.
Der volle Inhalt der QuelleSHANKER, Rama. „The Discrete Poisson-Aradhana Distribution“. Turkiye Klinikleri Journal of Biostatistics 9, Nr. 1 (2017): 12–22. http://dx.doi.org/10.5336/biostatic.2017-54834.
Der volle Inhalt der QuelleV. R., Saji Kumar. „α - Poisson Distribution“. Calcutta Statistical Association Bulletin 54, Nr. 3-4 (September 2003): 275–80. http://dx.doi.org/10.1177/0008068320030312.
Der volle Inhalt der QuelleBidounga, R., P. C. Batsindila Nganga, L. Niéré und D. Mizère. „A Note on the (Weighted) Bivariate Poisson Distribution“. European Journal of Pure and Applied Mathematics 14, Nr. 1 (31.01.2021): 192–203. http://dx.doi.org/10.29020/nybg.ejpam.v14i1.3895.
Der volle Inhalt der QuelleAbd El-Monsef, Mohamed, und Nora Sohsah. „POISSON TRANSMUTED LINDLEY DISTRIBUTION“. JOURNAL OF ADVANCES IN MATHEMATICS 11, Nr. 9 (01.01.2016): 5631–38. http://dx.doi.org/10.24297/jam.v11i9.816.
Der volle Inhalt der QuelleDeshmukh, S. R., und M. S. Kasture. „BIVARIATE DISTRIBUTION WITH TRUNCATED POISSON MARGINAL DISTRIBUTIONS“. Communications in Statistics - Theory and Methods 31, Nr. 4 (14.05.2002): 527–34. http://dx.doi.org/10.1081/sta-120003132.
Der volle Inhalt der QuelleARRATIA, RICHARD, A. D. BARBOUR und SIMON TAVARÉ. „The Poisson–Dirichlet Distribution and the Scale-Invariant Poisson Process“. Combinatorics, Probability and Computing 8, Nr. 5 (September 1999): 407–16. http://dx.doi.org/10.1017/s0963548399003910.
Der volle Inhalt der QuelleGao, Mingchu. „Compound bi-free Poisson distributions“. Infinite Dimensional Analysis, Quantum Probability and Related Topics 22, Nr. 02 (Juni 2019): 1950014. http://dx.doi.org/10.1142/s0219025719500140.
Der volle Inhalt der QuelleRufin, Bidounda, Michel Koukouatikissa Diafouka, R. Ìeolie Foxie Miz Ìel Ìe Kitoti und Dominique Miz`ere. „The Bivariate Extended Poisson Distribution of Type 1“. European Journal of Pure and Applied Mathematics 14, Nr. 4 (10.11.2021): 1517–29. http://dx.doi.org/10.29020/nybg.ejpam.v14i4.4151.
Der volle Inhalt der QuelleThavaneswaran, Aerambamoorthy, Saumen Mandal und Dharini Pathmanathan. „Estimation for Wrapped Zero Inflated Poisson and Wrapped Poisson Distributions“. International Journal of Statistics and Probability 5, Nr. 3 (08.04.2016): 1. http://dx.doi.org/10.5539/ijsp.v5n3p1.
Der volle Inhalt der QuelleDissertationen zum Thema "Poisson distribution"
Gu, Kangxia. „Testing the rates of Poisson distribution“. Ann Arbor, Mich. : ProQuest, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3213456.
Der volle Inhalt der QuelleTitle from PDF title page (viewed July 6, 2007). Source: Dissertation Abstracts International, Volume: 67-03, Section: B, page: 1504. Advisers: Hon Keung Tony Ng; William R. Schucany. Includes bibliographical references.
Wang, Ling. „Homogeneity tests for several poisson populations“. HKBU Institutional Repository, 2008. http://repository.hkbu.edu.hk/etd_ra/909.
Der volle Inhalt der QuelleSILVA, PRISCILLA FERREIRA DA. „A BIVARIATE GARMA MODEL WITH CONDITIONAL POISSON DISTRIBUTION“. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2013. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=22899@1.
Der volle Inhalt der QuelleCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE SUPORTE À PÓS-GRADUAÇÃO DE INSTS. DE ENSINO
Os modelos lineares generalizados auto regressivos com médias móveis (do inglês GARMA), possibilitam a modelagem de séries temporais de dados de contagem com estrutura de correlação similares aos dos modelos ARMA. Neste trabalho é desenvolvida uma extensão multivariada do modelo GARMA, considerando a especificação de um modelo Poisson bivariado a partir da distribuição de Kocherlakota e Kocherlakota (1992), a qual será denominada de modelo Poisson BGARMA. O modelo proposto é adequado para séries de contagens estacionárias, sendo possível, através de funções de ligação apropriadas, introduzir deterministicamente o efeito de sazonalidade e de tendência. A investigação das propriedades usuais dos estimadores de máxima verossimilhança (viés, eficiência e distribuição) foi realizada através de simulações de Monte Carlo. Com o objetivo de comparar o desempenho e a aderência do modelo proposto, este foi aplicado a dois pares de séries reais bivariadas de dados de contagem. O primeiro par de séries apresenta as contagens mensais de óbitos neonatais para duas faixas de dias de vida. O segundo par de séries refere-se a contagens de acidentes de automóveis diários em dois períodos: vespertino e noturno. Os resultados do modelo proposto, quando comparados com aqueles obtidos através do ajuste de um modelo Gaussiano bivariado Vector Autoregressive (VAR), indicam que o modelo Poisson BGARMA é capaz de capturar de forma adequada as variações de pares de séries de dados de contagem e de realizar previsões com erros aceitáveis, além de produzir previsões probabilísticas para as séries.
Generalized autoregressive linear models with moving average (GARMA) allow the modeling of discrete time series with correlation structure similar to those of ARMA’s models. In this work we developed an extension of a univariate Poisson GARMA model by considerating the specification of a bivariate Poisson model through the distribution presented on Kocherlakota and Kocherlakota (1992), which will be called Poisson BGARMA model. The proposed model not only is suitable for stationary discrete series, but also allows us to take into consideration the effect of seasonality and trend. The investigation of the usual properties of the maximum likelihood estimators (bias, efficiency and distribution) was performed using Monte Carlo simulations. Aiming to compare the performance and compliance of the proposed model, it was applied to two pairs of series of bivariate count data. The first pair is the monthly counts of neonatal deaths to two lanes of days. The second pair refers to counts of daily car accidents in two distinct periods: afternoon and evening. The results of our model when compared with those obtained by fitting a bivariate Vector Autoregressive Gaussian model (VAR) indicates that the Poisson BGARMA model is able to proper capture the variability of bivariate vectors of real time series of count data, producing forecasts with acceptable errors and allowing one to obtain probability forecasts.
Wan, Wai-yin. „Analysis of Poisson count data using Geometric Process model“. Click to view the E-thesis via HKUTO, 2006. http://sunzi.lib.hku.hk/hkuto/record/B37836493.
Der volle Inhalt der QuelleWan, Wai-yin, und 溫慧妍. „Analysis of Poisson count data using Geometric Process model“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B37836493.
Der volle Inhalt der QuelleBuchmann, Boris. „Decompounding an estimation problem for the compound poisson distribution /“. [S.l.] : [s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=962736910.
Der volle Inhalt der Quellevan, de Ven Remy Julius. „Estimation in mixed Poisson regression models“. Thesis, The University of Sydney, 1996. https://hdl.handle.net/2123/26822.
Der volle Inhalt der QuellePfister, Mark. „Distribution of a Sum of Random Variables when the Sample Size is a Poisson Distribution“. Digital Commons @ East Tennessee State University, 2018. https://dc.etsu.edu/etd/3459.
Der volle Inhalt der QuelleRodrigues, Cristiane. „Distribuições em série de potências modificadas inflacionadas e distribuição Weibull binominal negativa“. Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/11/11134/tde-28062011-095106/.
Der volle Inhalt der QuelleIn this paper, some result such as moments generating function, recurrence relations for moments and some theorems of the class of modified power series distributions (MPSD) proposed by Gupta (1974) and of the class of inflated modified power series distributions (IMPSD) both at a different point of zero as the zero point are presented. The standard Poisson model, the standard negative binomial model and zero inflated models for count data, ZIP and ZINB, using the techniques of the GLMs, were used to analyse two real data sets together with the normal plot with simulated envelopes. The new distribution Weibull negative binomial (WNB) was proposed. Some mathematical properties of the WNB distribution which is quite flexible in analyzing positive data were studied. It is an important alternative model to the Weibull, and Weibull geometric distributions as they are sub-models of WNB. We demonstrate that the WNB density can be expressed as a mixture of Weibull densities. We provide their moments, moment generating function, plots of the skewness and kurtosis, explicit expressions for the mean deviations, Bonferroni and Lorenz curves, quantile function, reliability and entropy, the density of order statistics and explicit expressions for the moments of order statistics. The method of maximum likelihood is used for estimating the model parameters. The expected information matrix is derived. The usefulness of the new distribution is illustrated in two analysis of real data sets.
Gagnon, Karine. „Distribution et abondance des larves d'éperlan arc-en-ciel (Osmerus mordax) au lac Saint-Jean /“. Thèse, Chicoutimi : Université du Québec à Chicoutimi, 2005. http://theses.uqac.ca.
Der volle Inhalt der QuelleBücher zum Thema "Poisson distribution"
Barbour, A. D. Poisson approximation. Oxford [England]: Clarendon Press, 1992.
Den vollen Inhalt der Quelle findenGrandell, Jan. Mixed Poisson processes. London: Chapman & Hall, 1997.
Den vollen Inhalt der Quelle findenLindsay, Glenn F. Recruiter productivity and the Poisson distribution. Monterey, Calif: Naval Postgraduate School, 1994.
Den vollen Inhalt der Quelle findenGeneralized Poisson distributions: Properties and applications. New York: M. Dekker, 1989.
Den vollen Inhalt der Quelle findenFeng, Shui. The Poisson-Dirichlet Distribution and Related Topics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11194-5.
Der volle Inhalt der QuelleThe Poisson-Dirichlet distribution and related topics: Models and asymptotic behaviors. Heidelberg: Springer, 2010.
Den vollen Inhalt der Quelle findenHarris, Ian Richard. Smooth and predictive estimates for the compound Poisson distribution. Birmingham: University of Birmingham, 1987.
Den vollen Inhalt der Quelle findenMarijtje A. J. van Duijn. Mixed models for repeated count data. Leiden, Netherlands: DSWO Press, Leiden University, 1993.
Den vollen Inhalt der Quelle findenHeldt, John J. Quality sampling and reliability: New uses for the poisson distribution. Boca Raton: St. Lucie Press, 1999.
Den vollen Inhalt der Quelle findenA, Kutoyants Yu. Statistical inference for spatial Poisson processes. New York: Springer, 1998.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Poisson distribution"
Gooch, Jan W. „Poisson Distribution“. In Encyclopedic Dictionary of Polymers, 991. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_15324.
Der volle Inhalt der QuelleGooch, Jan W. „Poisson Distribution“. In Encyclopedic Dictionary of Polymers, 546. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_8909.
Der volle Inhalt der QuelleWeik, Martin H. „Poisson distribution“. In Computer Science and Communications Dictionary, 1293. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_14247.
Der volle Inhalt der QuelleGooch, Jan W. „Poisson Ratio Distribution“. In Encyclopedic Dictionary of Polymers, 546. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_8911.
Der volle Inhalt der QuelleNguyen, Hung T., und Gerald S. Rogers. „The Poisson Distribution“. In Springer Texts in Statistics, 166–76. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4612-1013-9_20.
Der volle Inhalt der QuelleJolicoeur, Pierre. „The Poisson distribution“. In Introduction to Biometry, 124–33. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4777-8_19.
Der volle Inhalt der QuelleCummings, Peter. „The Poisson Distribution“. In Analysis of Incidence Rates, 53–82. Boca Raton : CRC Press, Taylor & Francis Group, 2019.: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429055713-4.
Der volle Inhalt der QuelleRussell, Kenneth G. „The Poisson Distribution“. In Design of Experiments for Generalized Linear Models, 149–69. Boca Raton, Florida : CRC Press, [2019] | Series: Chapman & Hall/CRC interdisciplinary statistics: Chapman and Hall/CRC, 2018. http://dx.doi.org/10.1201/9780429057489-5.
Der volle Inhalt der QuelleGrandell, Jan. „The mixed Poisson distribution“. In Mixed Poisson Processes, 13–50. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4899-3117-7_2.
Der volle Inhalt der QuelleFeng, Shui. „The Poisson–Dirichlet Distribution“. In Probability and its Applications, 15–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11194-5_2.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Poisson distribution"
Hubert, Paulo C., Marcelo S. Lauretto, Julio M. Stern, Paul M. Goggans und Chun-Yong Chan. „FBST for Generalized Poisson Distribution“. In BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING: The 29th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering. AIP, 2009. http://dx.doi.org/10.1063/1.3275617.
Der volle Inhalt der QuelleSEETHA MAHALAXMI, D., und P. R. K. MURTI. „TAMPER RESISTANCE VIA POISSON DISTRIBUTION“. In Proceedings of the 3rd Asian Applied Computing Conference. PUBLISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING CO., 2007. http://dx.doi.org/10.1142/9781860948534_0019.
Der volle Inhalt der QuelleAdzkiah, A., D. Lestari und L. Safitri. „Exponential Conway Maxwell Poisson distribution“. In PROCEEDINGS OF THE 6TH INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES 2020 (ISCPMS 2020). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0059254.
Der volle Inhalt der QuelleFitria, Dina, Nonong Amalita und Syafriandi. „Poisson Distribution with Discrete Parameter“. In Proceedings of the 2nd International Conference on Mathematics and Mathematics Education 2018 (ICM2E 2018). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/icm2e-18.2018.11.
Der volle Inhalt der QuelleÖzel, Gamze, und Selen Çakmakyapan. „A new generalized Poisson Lindley distribution“. In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4992404.
Der volle Inhalt der QuelleŠvihlík, Jan, Zuzana Krbcová, Jaromir Kukal und Karel Fliegel. „Smoothing of astronomical images with Poisson distribution“. In Applications of Digital Image Processing XL, herausgegeben von Andrew G. Tescher. SPIE, 2017. http://dx.doi.org/10.1117/12.2274121.
Der volle Inhalt der QuelleZamani, Hossein, Pouya Faroughi und Noriszura Ismail. „Bivariate Poisson-weighted exponential distribution with applications“. In PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4882600.
Der volle Inhalt der QuelleZhang, Hao Lan, Jiming Liu, Tongliang Li, Yun Xue, Songjie Xu und Junhua Chen. „Extracting sample data based on poisson distribution“. In 2017 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2017. http://dx.doi.org/10.1109/icmlc.2017.8108950.
Der volle Inhalt der QuelleYuanshu Jiang und Wenzhong Tang. „Poisson distribution-based page updating prediction strategy“. In 2011 International Conference on Computer Science and Network Technology (ICCSNT). IEEE, 2011. http://dx.doi.org/10.1109/iccsnt.2011.6182119.
Der volle Inhalt der QuelleRamanujam, P. S., und N. Gronbech-Jensen. „Generation of sub-Poisson distribution of light“. In Emerging OE Technologies, Bangalore, India, herausgegeben von Krishna Shenai, Ananth Selvarajan, C. K. N. Patel, C. N. R. Rao, B. S. Sonde und Vijai K. Tripathi. SPIE, 1992. http://dx.doi.org/10.1117/12.636808.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Poisson distribution"
Lindsay, Glenn F. Recruiter Productivity and the Poisson Distribution. Fort Belvoir, VA: Defense Technical Information Center, September 1994. http://dx.doi.org/10.21236/ada286230.
Der volle Inhalt der QuelleBryant, J. L., und A. S. Paulson. Estimation of the Parameters of a Modified Compound Poisson Distribution. Fort Belvoir, VA: Defense Technical Information Center, Januar 1986. http://dx.doi.org/10.21236/ada178540.
Der volle Inhalt der QuelleDeLacy, Brendan G., und Janon F. Embury. Infrared Extinction Coefficients of Aerosolized Conductive Flake Powders and Flake Suspensions having a Zero-Truncated Poisson Size Distribution. Fort Belvoir, VA: Defense Technical Information Center, November 2012. http://dx.doi.org/10.21236/ada570956.
Der volle Inhalt der QuelleZacks, S., und Gang Li. The Distribution of the Size and Number of Shadows Cast on a Line Segment in a Poisson Random Field. Fort Belvoir, VA: Defense Technical Information Center, Februar 1991. http://dx.doi.org/10.21236/ada233697.
Der volle Inhalt der QuelleVecherin, Sergey, Stephen Ketcham, Aaron Meyer, Kyle Dunn, Jacob Desmond und Michael Parker. Short-range near-surface seismic ensemble predictions and uncertainty quantification for layered medium. Engineer Research and Development Center (U.S.), September 2022. http://dx.doi.org/10.21079/11681/45300.
Der volle Inhalt der QuelleGuilfoyle, Michael, Ruth Beck, Bill Williams, Shannon Reinheimer, Lyle Burgoon, Samuel Jackson, Sherwin Beck, Burton Suedel und Richard Fischer. Birds of the Craney Island Dredged Material Management Area, Portsmouth, Virginia, 2008-2020. Engineer Research and Development Center (U.S.), September 2022. http://dx.doi.org/10.21079/11681/45604.
Der volle Inhalt der QuelleTummala, Rohan, Andrew de Jesus, Natasha Tillett, Jeffrey Nelson und Christine Lamey. Clinical and Socioeconomic Predictors of Palliative Care Utilization. University of Tennessee Health Science Center, Januar 2021. http://dx.doi.org/10.21007/com.lsp.2020.0006.
Der volle Inhalt der Quelle