Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Point cloud recovery“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Point cloud recovery" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Point cloud recovery"
Barazzetti, Luigi. „Point cloud occlusion recovery with shallow feedforward neural networks“. Advanced Engineering Informatics 38 (Oktober 2018): 605–19. http://dx.doi.org/10.1016/j.aei.2018.09.007.
Der volle Inhalt der QuelleLiang, Yan, Ye Hua Sheng und Ka Zhang. „Method on 3D Dense Point Cloud Recovery of Geographical Scene“. Advanced Materials Research 748 (August 2013): 619–23. http://dx.doi.org/10.4028/www.scientific.net/amr.748.619.
Der volle Inhalt der QuelleKresslein, Jacob, Payam Haghighi, Jaejong Park, Satchit Ramnath, Alok Sutradhar und Jami J. Shah. „Automated cross-sectional shape recovery of 3D branching structures from point cloud“. Journal of Computational Design and Engineering 5, Nr. 3 (16.11.2017): 368–78. http://dx.doi.org/10.1016/j.jcde.2017.11.010.
Der volle Inhalt der QuelleWongwailikhit, Kanda, Pienpak Tasakorn, Pattarapan Prasassarakich und Makoto Aratono. „Gold Recovery by pH-Switching Process via Cloud Point Extraction“. Separation Science and Technology 38, Nr. 14 (09.01.2003): 3591–607. http://dx.doi.org/10.1081/ss-120023420.
Der volle Inhalt der QuelleHillman, Samuel, Luke Wallace, Karin Reinke, Bryan Hally, Simon Jones und Daisy S. Saldias. „A Method for Validating the Structural Completeness of Understory Vegetation Models Captured with 3D Remote Sensing“. Remote Sensing 11, Nr. 18 (12.09.2019): 2118. http://dx.doi.org/10.3390/rs11182118.
Der volle Inhalt der QuelleFellechner, Oliver, und Irina Smirnova. „Feasibility of packed columns for continuous cloud point extraction with subsequent product recovery“. Separation and Purification Technology 258 (März 2021): 118046. http://dx.doi.org/10.1016/j.seppur.2020.118046.
Der volle Inhalt der QuelleChen, Honghua, Mingqiang Wei, Yangxing Sun, Xingyu Xie und Jun Wang. „Multi-Patch Collaborative Point Cloud Denoising via Low-Rank Recovery with Graph Constraint“. IEEE Transactions on Visualization and Computer Graphics 26, Nr. 11 (01.11.2020): 3255–70. http://dx.doi.org/10.1109/tvcg.2019.2920817.
Der volle Inhalt der QuelleHosseinyalamdary, S., und A. Yilmaz. „3D SUPER-RESOLUTION APPROACH FOR SPARSE LASER SCANNER DATA“. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences II-3/W5 (19.08.2015): 151–57. http://dx.doi.org/10.5194/isprsannals-ii-3-w5-151-2015.
Der volle Inhalt der QuelleMaterna, Katarzyna, Elzbieta Goralska, Anna Sobczynska und Jan Szymanowski. „Recovery of various phenols and phenylamines by micellar enhanced ultrafiltration and cloud point separation“. Green Chemistry 6, Nr. 3 (2004): 176. http://dx.doi.org/10.1039/b312343j.
Der volle Inhalt der QuelleRibeiro, Bernardo Dias, Daniel Weingart Barreto und Maria Alice Zarur Coelho. „Recovery of Saponins from Jua (Ziziphus joazeiro) by Micellar Extraction and Cloud Point Preconcentration“. Journal of Surfactants and Detergents 17, Nr. 3 (27.08.2013): 553–61. http://dx.doi.org/10.1007/s11743-013-1526-5.
Der volle Inhalt der QuelleDissertationen zum Thema "Point cloud recovery"
Chen, Cong. „High-Dimensional Generative Models for 3D Perception“. Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/103948.
Der volle Inhalt der QuelleDoctor of Philosophy
The development of automation systems and robotics brought the modern world unrivaled affluence and convenience. However, the current automated tasks are mainly simple repetitive motions. Tasks that require more artificial capability with advanced visual cognition are still an unsolved problem for automation. Many of the high-level cognition-based tasks require the accurate visual perception of the environment and dynamic objects from the data received from the optical sensor. The capability to represent, identify and interpret complex visual data for understanding the geometric structure of the world is 3D perception. To better tackle the existing 3D perception challenges, this dissertation proposed a set of generative learning-based frameworks on sparse tensor data for various high-dimensional robotics perception applications: underwater point cloud filtering, image restoration, deformation detection, and localization. Underwater point cloud data is relevant for many applications such as environmental monitoring or geological exploration. The data collected with sonar sensors are however subjected to different types of noise, including holes, noise measurements, and outliers. In the first chapter, we propose a generative model for point cloud data recovery using Variational Bayesian (VB) based sparse tensor factorization methods to tackle these three defects simultaneously. In the second part of the dissertation, we propose an image restoration technique to tackle missing data, which is essential for many perception applications. An efficient generative chaotic RNN framework has been introduced for recovering the sparse tensor from a single corrupted image for various types of missing data. In the last chapter, a multi-level CNN for high-dimension tensor feature extraction for underwater vehicle localization has been proposed.
HermawanSutanto und 陳忠胜. „Recovery of Nonionic Surfactant after Cloud Point Extraction of Polycyclic Aromatic Hydrocarbons“. Thesis, 2010. http://ndltd.ncl.edu.tw/handle/61446516836050054149.
Der volle Inhalt der Quelle國立成功大學
化學工程學系碩博士班
98
Cloud point extraction (CPE) has been applied successfully to remove the 9 compounds of polycyclic aromatic hydrocarbons (PAHs) by using nonionic surfactant Tergitol 15-S-7 as separating agent. Possibly, the CPE method may be applied in treating wastewater containing PAHs pollutants. In Addition, in order to make the process more economical and efficient, the surfactant in the surfactant rich phase should be recycled and reused. Solvent extraction and adsorption using activated carbon were used to separate the surfactant rich phase into surfactant and PAHs. In our work, alcohols like 1-hexanol, 1-octanol, 1-decanol, and 1-dodecanol were used as a solvent to extract PAHs in surfactant rich phase and recycle the fresher surfactants. Besides alcohols, solvent like ethyl acetate also being used. Activated charcoal with 100-400 mesh and 4-8 mesh sizes were used to separate the nine PAHs and nonionic surfactant from the surfactant rich phase. The results show that alcohols can be used to extract PAHs from the surfactant rich phase well. It is indicated from almost no PAHs detected in the lower phase after solvent extraction. And for surfactant, only about 22% of surfactant can be recovered from the surfactant rich phase after the solvent extraction process. Besides solvent extraction, adsorption using activated carbon for recovering the surfactant also can be done to separate the nine PAHs from surfactant rich phase and recover the fresher surfactant. By using this method, the surfactant recovery is above 90%.
Buchteile zum Thema "Point cloud recovery"
Jaiswal, Chetan, und Vijay Kumar. „Highly Available Fault-Tolerant Cloud Database Services“. In Advances in Systems Analysis, Software Engineering, and High Performance Computing, 119–42. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-5225-0153-4.ch005.
Der volle Inhalt der QuelleQin, Rongjun, Shuang Song, Xiao Ling und Mostafa Elhashash. „3D Reconstruction through Fusion of Cross-View Images“. In Recent Advances in Image Restoration with Applications to Real World Problems. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.93099.
Der volle Inhalt der QuelleSun, Yu, Jules White, Jeff Gray und Aniruddha Gokhale. „Model-Driven Automated Error Recovery in Cloud Computing“. In Grid and Cloud Computing, 680–700. IGI Global, 2012. http://dx.doi.org/10.4018/978-1-4666-0879-5.ch308.
Der volle Inhalt der QuelleAlkadi, Ihssan. „Assessing Security with Regard to Cloud Applications in STEM Education“. In Advances in Educational Technologies and Instructional Design, 260–76. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-9924-3.ch017.
Der volle Inhalt der QuelleAlkadi, Ihssan. „Assessing Security With Regard to Cloud Applications in STEM Education“. In Cyber Security and Threats, 230–47. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-5634-3.ch014.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Point cloud recovery"
Zhao, Weibing, Xu Yan, Jiantao Gao, Ruimao Zhang, Jiayan Zhang, Zhen Li, Song Wu und Shuguang Cui. „PointLIE: Locally Invertible Embedding for Point Cloud Sampling and Recovery“. In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/186.
Der volle Inhalt der QuelleYang, Xiang, Peter Meer und Hae Chang Gea. „Robust Recovery of 3D Geometric Primitives From Point Cloud“. In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-67564.
Der volle Inhalt der QuelleHosseinyalamdary, Siavash, und Alper Yilmaz. „Surface Recovery: Fusion of Image and Point Cloud“. In 2015 IEEE International Conference on Computer Vision Workshop (ICCVW). IEEE, 2015. http://dx.doi.org/10.1109/iccvw.2015.32.
Der volle Inhalt der QuelleAlkhateeb, Mojahed, Jeremy L. Rickli und Nicholas J. Christoforou. „Error Propagation in Digital Additive Remanufacturing Process Planning“. In ASME 2019 14th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/msec2019-3009.
Der volle Inhalt der QuelleFougeron, Gabriel, Guillaume Pierrot und Denis Aubry. „RECOVERY OF DIFFERENTIATION/INTEGRATION COMPATIBILITY OF MESHLESS OPERATORS VIA LOCAL ADAPTATION OF THE POINT CLOUD IN THE CONTEXT OF NODAL INTEGRATION“. In VII European Congress on Computational Methods in Applied Sciences and Engineering. Athens: Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, 2016. http://dx.doi.org/10.7712/100016.1837.7211.
Der volle Inhalt der QuelleSaputra, I. Wayan Rakananda, und David S. Schechter. „A Temperature Operating Window Concept for Application of Nonionic Surfactants for EOR in Unconventional Shale Reservoirs“. In SPE Annual Technical Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/206346-ms.
Der volle Inhalt der QuelleYuan, Xiaocui, Qingjin Peng, Lushen Wu und Huawei Chen. „A Novel Method of Normal Estimation for 3D Surface Reconstruction“. In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-46484.
Der volle Inhalt der QuelleWang, Le, Shengquan Xie, Wenjun Xu, Bitao Yao, Jia Cui, Quan Liu und Zude Zhou. „Human Point Cloud Inpainting for Industrial Human-Robot Collaboration Using Deep Generative Model“. In ASME 2020 15th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/msec2020-8353.
Der volle Inhalt der QuellePoddar, Sunrita, und Mathews Jacob. „Recovery of point clouds on surfaces: Application to image reconstruction“. In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). IEEE, 2018. http://dx.doi.org/10.1109/isbi.2018.8363803.
Der volle Inhalt der QuelleEICH, MARKUS, MALGORZATA DABROWSKA und FRANK KIRCHNER. „3D SCENE RECOVERY AND SPATIAL SCENE ANALYSIS FOR UNORGANIZED POINT CLOUDS“. In Proceedings of the 13th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814329927_0005.
Der volle Inhalt der Quelle