Zeitschriftenartikel zum Thema „Poincaré-Steklov operators“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Poincaré-Steklov operators.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-29 Zeitschriftenartikel für die Forschung zum Thema "Poincaré-Steklov operators" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Novikov, R. G., und I. A. Taimanov. „Darboux Moutard Transformations and Poincaré—Steklov Operators“. Proceedings of the Steklov Institute of Mathematics 302, Nr. 1 (August 2018): 315–24. http://dx.doi.org/10.1134/s0081543818060160.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Deparis, Simone, Marco Discacciati, Gilles Fourestey und Alfio Quarteroni. „Fluid–structure algorithms based on Steklov–Poincaré operators“. Computer Methods in Applied Mechanics and Engineering 195, Nr. 41-43 (August 2006): 5797–812. http://dx.doi.org/10.1016/j.cma.2005.09.029.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Demidov, A. S., und A. S. Samokhin. „Explicit Numerically Implementable Formulas for Poincaré–Steklov Operators“. Computational Mathematics and Mathematical Physics 64, Nr. 2 (Februar 2024): 237–47. http://dx.doi.org/10.1134/s0965542524020040.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Natarajan, Ramesh. „Domain Decomposition Using Spectral Expansions of Steklov–Poincaré Operators“. SIAM Journal on Scientific Computing 16, Nr. 2 (März 1995): 470–95. http://dx.doi.org/10.1137/0916029.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Xu, Jinchao, und Shuo Zhang. „Norms of Discrete Trace Functions of (Ω) and (Ω)“. Computational Methods in Applied Mathematics 12, Nr. 4 (2012): 500–512. http://dx.doi.org/10.2478/cmam-2012-0025.

Der volle Inhalt der Quelle
Annotation:
AbstractThis paper discusses the constructive and computational presentations of several non-local norms of discrete trace functions of H¹(Ω) and H²(Ω) defined on the boundary or interface of an unstructured grid. We transform the nonlocal norms of trace functions to local norms of certain functions defined on the whole domain by constructing isomorphic extension operators. A unified approach is used to explore several typical examples. Additionally, we also discuss exactly invertible Poincaré–Steklov operators and their discretization.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

ACHDOU, YVES, und FREDERIC NATAF. „PRECONDITIONERS FOR THE MORTAR METHOD BASED ON LOCAL APPROXIMATIONS OF THE STEKLOV-POINCARÉ OPERATOR“. Mathematical Models and Methods in Applied Sciences 05, Nr. 07 (November 1995): 967–97. http://dx.doi.org/10.1142/s0218202595000516.

Der volle Inhalt der Quelle
Annotation:
Many implicit Navier-Stokes solvers involve the discretization of an elliptic partial differential equation of the type −Δu+ηu=f, where η is a large positive parameter. The discretization studied here is the mortar finite element method, a domain decomposition method allowing nonmatching meshes at subdomains interfaces. Two kinds of improvements are proposed here in order to reduce the condition number of the corresponding linear systems: the first one lies on building preconditioners by approximating Steklov-Poincaré operators on subdomains boundaries by second-order partial differential operators; the second one consists in making a nonstandard choice of jump operators at subdomains interfaces. Both ideas are tested numerically.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Natarajan, Ramesh. „Domain Decomposition using Spectral Expansions of Steklov--Poincaré Operators II: A Matrix Formulation“. SIAM Journal on Scientific Computing 18, Nr. 4 (Juli 1997): 1187–99. http://dx.doi.org/10.1137/s1064827594274309.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

NICAISE, SERGE, und ANNA-MARGARETE SÄNDIG. „TRANSMISSION PROBLEMS FOR THE LAPLACE AND ELASTICITY OPERATORS: REGULARITY AND BOUNDARY INTEGRAL FORMULATION“. Mathematical Models and Methods in Applied Sciences 09, Nr. 06 (August 1999): 855–98. http://dx.doi.org/10.1142/s0218202599000403.

Der volle Inhalt der Quelle
Annotation:
This paper is devoted to some transmission problems for the Laplace and linear elasticity operators in two- and three-dimensional nonsmooth domains. We investigate the behaviour of harmonic and linear elastic fields near geometrical singularities, especially near corner points or edges where the interface intersects with the boundaries. We give a short overview about the known results for 2-D problems and add new results for 3-D problems. Numerical results for the calculation of the singular exponents in the asymptotic expansion are presented for both two- and three-dimensional problems. Some spectral properties of the corresponding parameter depending operator bundles are also given. Furthermore, we derive boundary integral equations for the solution of the transmission problems, which lead finally to "local" pseudo-differential operator equations with corresponding Steklov–Poincaré operators on the interface. We discuss their solvability and uniqueness. The above regularity results are used in order to characterize the regularity of the solutions of these integral equations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Hao, Sijia, und Per-Gunnar Martinsson. „A direct solver for elliptic PDEs in three dimensions based on hierarchical merging of Poincaré–Steklov operators“. Journal of Computational and Applied Mathematics 308 (Dezember 2016): 419–34. http://dx.doi.org/10.1016/j.cam.2016.05.013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Zhang, Yi, Varun Jain, Artur Palha und Marc Gerritsma. „The Discrete Steklov–Poincaré Operator Using Algebraic Dual Polynomials“. Computational Methods in Applied Mathematics 19, Nr. 3 (01.07.2019): 645–61. http://dx.doi.org/10.1515/cmam-2018-0208.

Der volle Inhalt der Quelle
Annotation:
AbstractIn this paper, we will use algebraic dual polynomials to set up a discrete Steklov–Poincaré operator for the mixed formulation of the Poisson problem. The method will be applied in curvilinear coordinates and to a test problem which contains a singularity. Exponential convergence of the trace variable in {H^{1/2}}-norm will be shown.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Xu, Jinchao, und Sheng Zhang. „Preconditioning the Poincaré-Steklov operator by using Green's function“. Mathematics of Computation 66, Nr. 217 (01.01.1997): 125–39. http://dx.doi.org/10.1090/s0025-5718-97-00799-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Kharytonov, A. A. „Solution of elliptic inverse problems using the Poincaré-Steklov operator“. International Journal of Applied Electromagnetics and Mechanics 19, Nr. 1-4 (24.04.2004): 63–67. http://dx.doi.org/10.3233/jae-2004-537.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Menad, M., und C. Daveau. „Comparison of several discretization methods of the Steklov–Poincaré operator“. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 19, Nr. 3 (2006): 271–87. http://dx.doi.org/10.1002/jnm.611.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Nazarov, S. A. „Finite-Dimensional Approximations of the Steklov–Poincaré Operator in Periodic Elastic Waveguides“. Doklady Physics 63, Nr. 7 (Juli 2018): 307–11. http://dx.doi.org/10.1134/s1028335818070108.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Demarcke, Pieterjan, und Hendrik Rogier. „The Poincaré–Steklov Operator in Hybrid Finite Element-Boundary Integral Equation Formulations“. IEEE Antennas and Wireless Propagation Letters 10 (2011): 503–6. http://dx.doi.org/10.1109/lawp.2011.2157072.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Bobylev, A. A. „On the Positive Definiteness of the Poincaré–Steklov Operator for Elastic Half-Plane“. Moscow University Mechanics Bulletin 76, Nr. 6 (November 2021): 156–62. http://dx.doi.org/10.3103/s0027133021060029.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Arfi, Kevin, und Anna Rozanova-Pierrat. „Dirichlet-to-Neumann or Poincaré-Steklov operator on fractals described by d-sets“. Discrete & Continuous Dynamical Systems - S 12, Nr. 1 (2019): 1–26. http://dx.doi.org/10.3934/dcdss.2019001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Nazarov, S. A. „Finite-Dimensional Approximations of the Steklov–Poincaré Operator for the Helmholtz Equation in Periodic Waveguides“. Journal of Mathematical Sciences 232, Nr. 4 (07.06.2018): 461–502. http://dx.doi.org/10.1007/s10958-018-3890-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Bobylev, A. A. „Computing a Transfer Function of the Poincaré–Steklov Operator for a Functionally Graded Elastic Strip“. Moscow University Mechanics Bulletin 78, Nr. 5 (Oktober 2023): 134–42. http://dx.doi.org/10.3103/s0027133023050023.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Fokoué, Diane, und Yves Bourgault. „Numerical analysis of finite element methods for the cardiac extracellular-membrane-intracellular model: Steklov–Poincaré operator and spatial error estimates“. ESAIM: Mathematical Modelling and Numerical Analysis 57, Nr. 4 (Juli 2023): 2595–621. http://dx.doi.org/10.1051/m2an/2023052.

Der volle Inhalt der Quelle
Annotation:
The extracellular-membrane-intracellular (EMI) model consists in a set of Poisson equations in two adjacent domains, coupled on interfaces with nonlinear transmission conditions involving a system of ODEs. The unusual coupling of PDEs and ODEs on the boundary makes the EMI models challenging to solve numerically. In this paper, we reformulate the problem on the interface using a Steklov–Poincaré operator. We then discretize the model in space using a finite element method (FEM). We prove the existence of a semi-discrete solution using a reformulation as an ODE system on the interface. We derive stability and error estimates for the FEM. Finally, we propose a manufactured solution and use it to perform numerical tests. The order of convergence of the numerical method agrees with what is expected on the basis of the theoretical analysis of the convergence.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Aletti, Matteo, und Damiano Lombardi. „A reduced-order representation of the Poincaré-Steklov operator: an application to coupled multi-physics problems“. International Journal for Numerical Methods in Engineering 111, Nr. 6 (20.01.2017): 581–600. http://dx.doi.org/10.1002/nme.5490.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Dobbelaere, D., D. De Zutter, J. Van Hese, J. Sercu, T. Boonen und H. Rogier. „A Calderón multiplicative preconditioner for the electromagnetic Poincaré–Steklov operator of a heterogeneous domain with scattering applications“. Journal of Computational Physics 303 (Dezember 2015): 355–71. http://dx.doi.org/10.1016/j.jcp.2015.09.052.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Hardin, Thomas J., und Christopher A. Schuh. „Fast finite element calculation of effective conductivity of random continuum microstructures: The recursive Poincaré–Steklov operator method“. Journal of Computational Physics 342 (August 2017): 1–12. http://dx.doi.org/10.1016/j.jcp.2017.04.021.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Boeykens, Freek, Hendrik Rogier, Jan Van Hese, Jeannick Sercu und Tim Boonen. „Rigorous Analysis of Internal Resonances in 3-D Hybrid FE-BIE Formulations by Means of the Poincaré–Steklov Operator“. IEEE Transactions on Microwave Theory and Techniques 61, Nr. 10 (Oktober 2013): 3503–13. http://dx.doi.org/10.1109/tmtt.2013.2277990.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Vodstrčil, Petr, Dalibor Lukáš, Zdeněk Dostál, Marie Sadowská, David Horák, Oldřich Vlach, Jiří Bouchala und Jakub Kružík. „On favorable bounds on the spectrum of discretized Steklov-Poincaré operator and applications to domain decomposition methods in 2D“. Computers & Mathematics with Applications 167 (August 2024): 12–20. http://dx.doi.org/10.1016/j.camwa.2024.04.033.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Bobylev, A. A. „Numerical Construction of the Transform of the Kernel of the Integral Representation of the Poincaré–Steklov Operator for an Elastic Strip“. Differential Equations 59, Nr. 1 (Januar 2023): 119–34. http://dx.doi.org/10.1134/s0012266123010093.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Nazarov, S. A. „Finite-dimensional approximations to the Poincaré–Steklov operator for general elliptic boundary value problems in domains with cylindrical and periodic exits to infinity“. Transactions of the Moscow Mathematical Society 80 (01.04.2020): 1–51. http://dx.doi.org/10.1090/mosc/290.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

BOGATYREV, A. B. „On spectra of pairs of Poincaré-Steklov operators“. Russian Journal of Numerical Analysis and Mathematical Modelling 8, Nr. 3 (1993). http://dx.doi.org/10.1515/rnam.1993.8.3.177.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Laadj, Toufik, und Khaled M’hamed-Messaoud. „Steklov–Poincaré Operator for A System of Coupled Abstract Cauchy Problems“. Differential Equations and Dynamical Systems, 09.04.2019. http://dx.doi.org/10.1007/s12591-019-00470-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie