Auswahl der wissenschaftlichen Literatur zum Thema „Plasma nozzle“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Plasma nozzle" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Plasma nozzle"

1

Wen, Kui, Min Liu, Kesong Zhou, Xuezhang Liu, Renzhong Huang, Jie Mao, Kun Yang, Xiaofeng Zhang, Chunming Deng und Changguang Deng. „The Influence of Anode Inner Contour on Atmospheric DC Plasma Spraying Process“. Advances in Materials Science and Engineering 2017 (2017): 1–12. http://dx.doi.org/10.1155/2017/2084363.

Der volle Inhalt der Quelle
Annotation:
In thermal plasma spraying process, anode nozzle is one of the most important components of plasma torch. Its inner contour controls the characteristics of plasma arc/jet, determining the motion and heating behaviors of the in-flight particles and hence influencing the coating quality. In this study, the effects of anode inner contour, standard cylindrical nozzle, and cone-shaped Laval nozzle with conical shape diverging exit (CSL nozzle) on the arc voltage, net power, thermal efficiency, plasma jet characteristics, in-flight particle behaviors, and coating properties have been systematically investigated under atmospheric plasma spraying conditions. The results show that the cylindrical nozzle has a higher arc voltage, net power, and thermal efficiency, as well as the higher plasma temperature and velocity at the torch exit, while the CSL nozzle has a higher measured temperature of plasma jet. The variation trends of the plasma jet characteristics for the two nozzles are comparable under various spraying parameters. The in-flight particle with smaller velocity of CSL nozzle has a higher measured temperature and melting fraction. As a result, the coating density and adhesive strength of CSL nozzle are lower than those of cylindrical nozzle, but the deposition efficiency is greatly improved.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Málek, Miloslav, Miloš Mičian und Augustín Sládek. „Flow Simulation as a Support to Predict Shape of Plasma Beam Affected by the Nozzle Geometry“. MATEC Web of Conferences 328 (2020): 02008. http://dx.doi.org/10.1051/matecconf/202032802008.

Der volle Inhalt der Quelle
Annotation:
This paper deals with flow simulation of plasma beam shape affected by the different nozzle geometry. The flow simulations for different nozzles geometry were made in simulation software Ansys-Fluent. The evaluation of flow simulations was based on comparing shapes of the flow media out from the modified nozzle orifice against reference nozzle. There were investigated 8 different modification of nozzle orifice. Modified nozzle n. 7 (in the shape of a Laval nozzle) has achieved significant improvement from all simulated. There were observed 3 cores of plasma beam, which could help blow dross out from cutting gap. Investigated results serve for further research.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

MOSHER, D., B. V. WEBER, B. MOOSMAN, R. J. COMMISSO, P. COLEMAN, E. WAISMAN, H. SZE et al. „Measurement and analysis of gas-puff density distributions for plasma radiation source z pinches“. Laser and Particle Beams 19, Nr. 4 (Oktober 2001): 579–95. http://dx.doi.org/10.1017/s026303460119405x.

Der volle Inhalt der Quelle
Annotation:
High-sensitivity interferometry measurements of initial density distributions are reviewed for a wide range of gas-puff nozzles used in plasma radiation source (PRS) z-pinch experiments. Accurate gas distributions are required for determining experimental load parameters, modeling implosion dynamics, understanding the radiation properties of the stagnated pinch, and for predicting PRS performance in future experiments. For a number of these nozzles, a simple ballistic-gas-flow model (BFM) has been used to provide good physics-based analytic fits to the measured r, z density distributions. These BFM fits provide a convenient means to smoothly interpolate radial density distributions between discrete axial measurement locations for finer-zoned two-dimensional MHD calculations, and can be used to determine how changes in nozzle parameters and load geometry might alter implosion dynamics and radiation performance. These measurement and analysis techniques are demonstrated for a nested-shell nozzle used in Double Eagle and Saturn experiments. For this nozzle, the analysis suggests load modifications that may increase the K-shell yield.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Ignatov, A. V., I. V. Krivtsun und I. L. Semenov. „Characteristics of non-equilibrium arc plasma in plasmatron nozzle channel“. Paton Welding Journal 2016, Nr. 1 (28.01.2016): 2–11. http://dx.doi.org/10.15407/tpwj2016.01.01.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Liffman, Kurt. „Relativistic Jet Flow from a One Dimensional Magnetic Nozzle—Analytic Solutions“. Publications of the Astronomical Society of Australia 18, Nr. 3 (2001): 267–80. http://dx.doi.org/10.1071/as01034.

Der volle Inhalt der Quelle
Annotation:
AbstractMagnetohydrodynamic devices that can accelerate plasmas to speeds of the order of hundreds of kilometres per second have been designed and built for nearly forty years. Up to the time of writing, however, the theory for such devices has been exclusively non-relativistic. In this paper we derive the special relativistic magnetohydrodynamic (SRMHD) equations and use them to obtain the relativistic, magnetic nozzle equation which describes the production of jet flows with speeds approaching the speed of light.We obtain analytic solutions to this equation and show that, in principle, magnetic field gradients can accelerate a plasma to highly relativistic speeds. We also show that the exit kinetic energy, EK, of a particle is given by the equation EK = m0C2FR, where m0 is the rest mass of the particle and CFR is the fast magnetosonic speed at the start of the flow.The relativistic nozzle differs in a number of ways from the non-relativistic case.A non-relativistic nozzle has a relatively symmetric converging/diverging shape, while a highly relativistic nozzle converges in the usual manner, but diverges, in an abrupt fashion, at the very end of the nozzle. The gentle divergence of non-relativistic nozzles causes the exit plasma densities and magnetic fields of the flow to have values that are small relative to their values at the start of the nozzle. The abrupt divergence of a highly relativistic nozzle implies that, for a less than perfect nozzle, the exit values of the mass density and the magnetic field strength are comparable to their initial values. This unexpected dichotomy in behaviour may have future application in understanding the ‘radio-loud’ and ‘radio-quiet’ relativistic jets that are produced from astrophysical sources.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Aizawa, Tatsuhiko, Hiroshi Morita und Kenji Wasa. „Low-Temperature Plasma Nitriding of Mini-/Micro-Tools and Parts by Table-Top System“. Applied Sciences 9, Nr. 8 (23.04.2019): 1667. http://dx.doi.org/10.3390/app9081667.

Der volle Inhalt der Quelle
Annotation:
Miniature products and components must be surface treated to improve their wear resistance and corrosion toughness. Among various processes, low-temperature plasma nitriding was employed to harden the outer and inner surfaces of micro-nozzles and to strengthen the micro-springs. A table-top nitriding system was developed even for simultaneous treatment of nozzles and springs. A single AISI316 micro-nozzle was nitrided at 673 K for 7.2 ks to have a surface hardness of 2000 HV0.02 and nitrogen solute content up to 10 mass%. In particular, the inner and outer surfaces of a micro-nozzle outlet were uniformly nitrided. In addition, the surface contact angle increased from 40° for bare stainless steels to 104° only by low-temperature plasma nitriding. A stack of micro-nozzles was simultaneously nitrided for mass production. Micro-springs were also nitrided to improve their stiffness for medical application.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Melamies, Inès A. „Adhesion from the Plasma Nozzle“. adhesion ADHESIVES + SEALANTS 15, Nr. 4 (Dezember 2018): 28–31. http://dx.doi.org/10.1007/s35784-018-0024-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Menon, Pranav. „Investigation of Variation in the Performance of an Electro Thermal Thruster with Aerospike Nozzle“. Advanced Engineering Forum 16 (April 2016): 91–103. http://dx.doi.org/10.4028/www.scientific.net/aef.16.91.

Der volle Inhalt der Quelle
Annotation:
One of the most recently developed modes of propulsion is electric propulsion. The commonly used chemical propulsion systems have the advantage of a high Specific Impulse as compared to that of ion propulsion systems. However, owing to the efficacy of ion propulsion systems, it is considered the future of space exploration.Electro thermal thrusters produce thrust by using electrical fields to force hot plasma out of the nozzle with certain exit velocity. The plasma’s exit velocity and the system’s thrust capacity, as of now, are insufficient for space travel to be conducted within a reasonable time. I intend to study the possibility of improving the thruster’s performance by using an aerospike nozzle as an exit nozzle which meets the conditions required for the thruster to function appropriately. I shall be studying the plasma plume exit velocity variation with respect to the nozzles used. Also, a thermal analysis will be conducted in order to find the correct material for the nozzle.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Hooper, E. B. „Plasma detachment from a magnetic nozzle“. Journal of Propulsion and Power 9, Nr. 5 (September 1993): 757–63. http://dx.doi.org/10.2514/3.23686.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Pitayachaval, Paphakorn, und Muhammatsoifu Sato. „Investigating Parameters That Effect to Wear of Plasma Nozzle“. MATEC Web of Conferences 213 (2018): 01010. http://dx.doi.org/10.1051/matecconf/201821301010.

Der volle Inhalt der Quelle
Annotation:
Plasma cutting machine normally applies to cut metal in electrical conductivity industrial according to an accuracy dimension and rapidly time consuming. A quality of this process is depend upon a cutting surface and kerf by controlling diameter of nozzle and size of electrode. Since kerf shape is crated base on nozzle diameter, while electrode is served plasma arc. This paper presents an investigating three cutting parameters: cutting speed, pressure gas, current ampere that affect to wear of plasma nozzle. The fixed variables are a plasma-cutting machine, Hypertherm powermax 45 xp, Bindee control CNC machine and specimens (100×100 mm.). The cutting speed was holed at 200, 300, 400 mm/min. The gas pressure was controlled at 6, 7, 8 bar. The current Ampere was handled at 40, 42, 45 A. The diameters of nozzle was measured using digital microscope. The experiments conducted based on ANOVA to establish the relationship of those parameters. The nozzle wear depended upon the current Ampere, the high gas pressure while the cutting speed was not effect to nozzle wear.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Plasma nozzle"

1

Chancery, William. „Investigation of plasma detachment from a magnetic nozzle“. Auburn, Ala., 2007. http://repo.lib.auburn.edu/07M%20Theses/CHANCERY_WILLIAM_57.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Glesner, Colin Christopher. „Development of Magnetic Nozzle Simulations for Space Propulsion Applications“. Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/74947.

Der volle Inhalt der Quelle
Annotation:
A means of space propulsion using the channeling of plasma by a divergent magnetic field, referred to as a magnetic nozzle has been explored by a number of research groups. This research develops the capability to apply the high order accurate Runge-Kutta discontinuous Galerkin numerical method to the simulation of magnetic nozzles. The resistive magnetohydrodynamic model of plasma behavior is developed for these simulations. To facilitate this work, several modeling capabilities are developed, including the implementation of appropriate inflow and far-field boundary conditions, the application of a technique for correcting errors that develop in the divergence of the magnetic field, and a split formulation for the magnetic field between the applied and the perturbed component. This model is then applied to perform a scaling study of the performance of magnetic nozzles over a range of Bk and Rm. In addition, the effect of the choice of simulation domain size is investigated. Finally, recommendations for future work are made.
Master of Science
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Kaufman, David A. Goodwin David G. Goodwin David G. „Investigation of an ECR plasma thruster and plasma beam interactions with a magnetic nozzle /“. Diss., Pasadena, Calif. : California Institute of Technology, 1995. http://resolver.caltech.edu/CaltechETD:etd-07102007-131210.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Slavic, Aleksander. „Theoretical studies of plasma detachment in the VASIMR magnetic nozzle“. Thesis, KTH, Rymd- och plasmafysik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-104078.

Der volle Inhalt der Quelle
Annotation:
In this thesis, theoretical studies are conducted to see whether plasma will detach from the magnetic field lines of the VASIMR thruster, and if so, at which location detachment takes place. A magnetic field similar to the field of the VASIMR VF-24 engine [1] is used and ions of different speed and massare sent from various radial positions in the exhaust. Calculation with different values of the anomalous resistivity parameter ωτ is conducted and the sensitivity to this parameter is studied. The validity of the method is studied by comparing results to previous work by Carl Wesslén [2]. From the results it is concluded that using heavy ions sent at high speeds will achieve detachment and high thrust efficiency, even when assuming relatively high values of ωτ. Ejecting ions at a slower pace or using lighter ions will make the engine less efficient, requiring low ωτ which is difficult to achieve. For some combinations of mass and speed, detachment is not possible at all. Ions with heavy mass are recommended to use as propellant for this type of thruster.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Croteau, Tyler J. „Micro-Nozzle Simulation and Test for an Electrothermal Plasma Thruster“. DigitalCommons@CalPoly, 2018. https://digitalcommons.calpoly.edu/theses/1961.

Der volle Inhalt der Quelle
Annotation:
With an increased demand in Cube Satellite (CubeSat) development for low cost science and exploration missions, a push for the development of micro-propulsion technology has emerged, which seeks to increase CubeSat capabilities for novel mission concepts. One type of micro-propulsion system currently under development, known as Pocket Rocket, is an electrothermal plasma micro-thruster. Pocket Rocket uses a capacitively coupled plasma, generated by radio-frequency, in order to provide neutral gas heating via ion-neutral collisions within a gas discharge tube. When compared to a cold-gas thruster of similar size, this gas heating mechanism allows Pocket Rocket to increase the exit thermal velocity of its gaseous propellant for increased thrust. Previous experimental work has only investigated use of the gas discharge tube's orifice for propellant expansion into vacuum. This thesis aims to answer if Pocket Rocket may see an increase in thrust with the addition of a micro-nozzle, placed at the end of the gas discharge tube. With the addition of a conical ε = 10, α = 30° micro-nozzle, performance increases of up to 6% during plasma operation, and 25% during cold gas operation, have been observed. Propellant heating has also been observed to increase by up to 60 K within the gas discharge tube.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Peterschmitt, Simon. „Development of a Stable and Efficient Electron Cyclotron Resonance Thruster with Magnetic Nozzle“. Thesis, Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAX053.

Der volle Inhalt der Quelle
Annotation:
Les propulseurs plasmas sont le sujet d’un intérêt grandissant pour équiper de petits satellites. Des miniaturisations de technologies matures ont été proposées ainsi que des concepts innovants, tels le propulseur à résonance cyclotron électronique muni d’une tuyère magnétique (ECRT). Ce propulseur pourrait réaliser une rupture technologique car il est sans grilles, sans neutraliseur et n’a besoin que d’un seul générateur. Le présent travail consiste à développer un ECRT accompagné du dispositif expérimental nécessaire, capable de démontrer avec précision une grande efficacité durant un fonctionnement prolongé en régime permanent. Les précédentes études sur l’ECRT étaient limitées par un manque de précision sur des mesures clés, en raison du dispositif et des technologies nécessaires à l’étude de ce propulseur. La procédure et le dispositif expérimentaux sont donc largement améliorés pour augmenter la précision des mesures. Toutefois, des spécificités dues à la tuyère magnétique compliquent l’interprétation des mesures de densité de courant d’ion. Notre analyse s’appuie donc principalement sur des mesures de poussées obtenues avec une balance. Par ailleurs, nous montrons que les performances du propulseur augmentent significativement quand on diminue la pression dans le caisson de test jusqu’à 10-7 mbar Xénon. En outre, d’éventuels effets de caisson sont explorés en testant le propulseur à l’ONERA (Palaiseau, France) et à JLU (Giessen, Allemagne). En prenant en considération ces difficultés expérimentales, nous étudions l’efficacité du propulseur en fonction de la géométrie de l’injection de gaz neutre, de la topologie du champ magnétique, et des conditions aux limites de la tuyère magnétique. De plus, nous abordons la question de l’érosion du propulseur, de deux manières : premièrement par une modification des matériaux et deuxièmement par une modification de la structure de couplage (coaxiale, ou guide d’onde circulaire). Le couplage de type guide d’onde produit des ions à des énergies trop faibles pour les exigences de la propulsion spatiale ; en revanche, une structure de couplage coaxiale usinée en graphite semble diminuer substantiellement l’érosion sans compromettre l’efficacité. Ces résultats permettent de concevoir et de tester un propulseur ~ 30 W et un propulseur ~ 200 W dont les performances sont répétables dans le temps. L’efficacité et la durée de vie sont considérablement augmentées : une première campagne de test indique une efficacité allant jusqu’à ~ 50% et une durée de vie estimée de un à quelques milliers d’heures. Pour éclairer les résultats expérimentaux, nous proposons une nouvelle démarche de modélisation, fondée sur l’étude des trajectoires des électrons et sur une approche du chauffage électronique au moyen d’une équation de Fokker-Planck. Cette démarche débouche sur le calcul de la fonction de distribution en énergie des électrons dans le propulseur ; celle-ci détermine le courant d’ions extrait et l’énergie des ions
Plasma thrusters are the subject of growing interest as a means for small satellite propulsion. Miniaturizations of mature technologies as well as innovative concepts have been proposed such as the electron-cyclotron resonance thruster with magnetic nozzle (ECRT). This thruster appears as a potentially disruptive technology because it is gridless, neutralizerless, and only requires one power supply. This work consists in the development of an ECRT with magnetic nozzle and its accompanying experimental test bench, able to accurately demonstrate high thruster efficiency during prolonged steady state operation. Previous studies on the ECRT were limited by a significant lack of accuracy on key measurements, due to the specific setup and technology needed for this thruster. The experimental procedure and the setup are thus heavily upgraded to improve the accuracy of experimental data. However, peculiarities of the magnetic nozzle complicate the interpretation of the ion current density measurements, thus our analysis of performance is mainly based on thrust balance measurements. Besides, thruster performance is shown to significantly increase when decreasing vacuum tank pressure down to 10-7 mbar Xenon, and facility effects are investigated by testing the thruster both at ONERA (France) and at JLU (Germany). Well aware of these experimental difficulties, we study the efficiency of the thruster as a function of neutral gas injection, magnetic field topology, and boundary conditions of the magnetic nozzle. In addition, we address erosion issues in two ways: first by a change of materials, and second by a change of coupling structure (coaxial, or circular waveguide). Waveguide coupling yields insufficient ion energies for space propulsion requirements but manufacturing the coaxial coupling structure with graphite appears to substantially mitigate erosion. These results enable to design and test a ~ 30 W and a ~ 200 W thruster consistently yielding state-of-the-art efficiencies as compared to other thruster types while having sufficient estimated lifetime. In order to shed light on the experimental outcomes, a new modelling approach is developed based on the study of electron trajectories and a Fokker-Planck heating model calculating the formation of the electron energy distribution function in the thruster
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Yu, Nan. „Thermal analysis of energy beam using de-laval nozzle in plasma figuring process“. Thesis, Cranfield University, 2016. http://dspace.lib.cranfield.ac.uk/handle/1826/12418.

Der volle Inhalt der Quelle
Annotation:
In 2012, plasma figuring was proven to be an alternative solution for the fabrication of large scale ultra-precise optical surfaces. Indeed, plasma figuring was successfully demonstrated on a metre class glass surface. The process was exceptionally rapid but residual errors were observed. This thesis addresses this issue by proposing an enhanced tool that provides a highly collimated plasma jet. The enhanced tool is characterized by a targeted material removal footprint in the range 1 to 5 mm FWHM. The energy beam is provided by an Inductively Coupled Plasma (ICP) torch equipped with a De-Laval nozzle. This thesis focuses on characterization and optimisation of the bespoke plasma torch and its plasma jet. Two research investigations were carried out using both numerical and experimental approaches. A novel CFD model was created to analyse and understand the behaviour of high temperature gas in the De-Laval nozzle. The numerical approach, that was based on appropriate profiles of temperature and velocity applied to the nozzle inlet, led to a significant reduction of computational resources. This model enabled to investigate the aerodynamic phenomena observed from the nozzle inlet up to the processed surface. Design rules and the effect of changing nozzle parameters were identified. Sensitivity analysis highlighted that the throat diameter is the most critical parameter. A challenging power dissipation analysis of the plasma torch was carried out. Temperature and flow rate in key components of the torch were measured. Experimental results enabled to calculate the power dissipation values for RF power up to 800 W and for the entire series of designed nozzles. This work enabled to scientifically understand the power dissipation mechanism in the bespoke ICP torches. In addition, by comparing the intensity of the power dissipation values, one nozzle was clearly identified as being more capable to provide a highly efficient plasma jet.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Caruso, Natalie R. S. „Facility effects on Helicon ion thruster operation“. Diss., Georgia Institute of Technology, 2016. http://hdl.handle.net/1853/55014.

Der volle Inhalt der Quelle
Annotation:
In order to enable comparison of Helicon ion thruster performance across different vacuum test facilities, an understanding of the effect of operating pressure on plasma plume properties is required. Plasma property measurements are compared for thruster operation at two separate vacuum facility operating pressures to determine the effect of neutral ingestion on Helicon ion thruster operation. The ion energy distribution function (IEDF), electron temperature, ion number density, and plasma potential are measured along the thruster main axis for a replica of the Madison Helicon eXperiment. Plasma property values recorded at the ‘high-pressure condition’ (3.0×10^(-4) Torr corrected for argon) are compared to values recorded at the ‘low-pressure condition’ (1.2×10^(-5) Torr corrected for argon) for thruster operation at 100 - 500 watts radio frequency forward power, 340 – 700 gauss source region magnetic field strength, and 1.3 - 60 sccm argon volumetric flow rate (0.039-1.782 mg/s). Differences in plasma behavior at the ‘high-pressure condition’ result from two primary neutral-plume interactions: collisions between accelerated beam ions and ingested neutrals leading to a reduction of ion energy and neutral ionization downstream of the thruster exit due to electron-neutral collisions. Electron temperature at higher operating pressures is lowered due to an electron cooling effect resulting from repeated collisions with neutral atoms. Results suggest that Helicon ion thruster plasma properties are greatly influenced when subjected to neutral ingestion.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Vialis, Théo. „Développement d’un propulseur plasma à résonance cyclotron électronique pour les satellites“. Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS344.

Der volle Inhalt der Quelle
Annotation:
Ce travail de thèse porte sur le propulseur électrique de type ECR (résonance cyclotron électronique) développé à l’ONERA. Ce propulseur quasi-neutre, qui utilise une tuyère magnétique pour accélérer le plasma, produit une poussée d’environ 1 mN pour des puissances inférieures à 50 W. Dans cette thèse, on se propose de développer et d’optimiser les diagnostics de mesure des performances du propulseur ECR, d’identifier les paramètres expérimentaux pouvant influencer les performances et d’améliorer la compréhension des phénomènes physiques ayant lieu dans le propulseur. Ces objectifs ont pour finalité l’amélioration des performances. Pour répondre à ces objectifs, plusieurs prototypes à aimant permanent ont été développés, et une balance permettant de mesurer directement la poussée a été modifiée pour caractériser le propulseur. Différentes études paramétriques ont été conduites, qui ont montré que les performances dépendaient directement du rapport entre le débit de xénon et la puissance micro-onde injectée. Il a également été observé que la longueur du conducteur externe de la source plasma et la pression ambiante ont une influence significative sur le niveau de performance. Après optimisation de la géométrie, un rendement total supérieur à 12 % a été obtenu. Des mesures séparées de la poussée thermique et magnétique ont permis de montrer que la composante magnétique était la contribution principale de la poussée dans tous les cas testés. Un code PIC 1D-3V a été utilisé pour simuler le comportement du propulseur, et a permis de reproduire le chauffage des électrons par résonance et l’accélération des espèces chargées dans la tuyère. L’ensemble des travaux ont mis en avant le rôle des composantes parallèle et perpendiculaire de la pression électronique
Electric propulsion is an alternative technology to the chemical propulsion that enables reducing propellant consumption for satellites. ONERA is developing an electric ECR thruster with a thrust around 1 mN and an electric power less than 50 W. The thruster creates a plasma by electron cyclotron resonance and accelerates it through a magnetic nozzle. In this thesis work, an optimization of the measurement diagnostics is done. The work also aims at identifying the important parameters for the performances of the thruster and at improving the understanding of underlying physics, in order to increase the thruster efficiency. Several prototypes have been developed and a thrust stand that can directly measure the thrust has been modified. Some parametric studies have been led and have shown that the thruster performance strongly depends on xenon mass-flow rate to microwave power ratio. It has also shown that the external conductor of the plasma source and the ambient pressure have a significant influence on the performances. Following a geometric optimization, a maximum total efficiency of more than 12% has been obtained. Separate measurements of the magnetic and thermal thrust have shown that the magnetic thrust is the main component of the total thrust. A 1D-3V PIC code has been used to simulate the behavior of the thruster. The analysis of the results has shown that the ECR heating and particle acceleration in the magnetic nozzle could be properly computed. The role of the parallel and perpendicular component of electron pressure has been evidenced by this work
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Dvořáková, Eva. „Využití plazmové trysky pro hojení ran“. Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2021. http://www.nusl.cz/ntk/nusl-444544.

Der volle Inhalt der Quelle
Annotation:
This diploma thesis was focused on the possibility of using a plasma nozzle to accelerate the wound healing process. The benefits of using low-temperature plasma in medicine or biomedical applications are known from many studies, and low-temperature plasma is already used to sterilize medical devices, materials or surgical instruments. Some studies also report a high potential of usinh plasma nozzle in the treatment of skin wounds. In the experimental part of this work, an in vitro wound healing test was performed using two different low-temperature plasma sources. Source No. 1 was a surface wave microwave discharge and source No. 2 was a torch microwave discharge. An in vitro scratch healing test was performed on a monolayer of HaCaT keratinocytes and testing was performed using various parameters. The influence of the plasma treatment time was monitored, as well as the influence of the plasma discharge power and also the influence of the argon working gas flow. Especially when using a torch microwave discharge, faster wound healing was recorded at most of the parameters used compared to the control. Thus, it can be said that this source appears to be potentially suitable for faster wound healing. Furthermore, in the work using the MTT cytotoxicity test, the viability of skin cells after their plasmination was also monitored using the same conditions as in the in vitro wound healing test. When performed in the standard MTT assay, none of the settings or sources used showed any cytotoxic effects on keratinocytes. LDH cytotoxicity tests were also performed concurrently to verify the accuracy of the MTT assays. The results of both tests agreed and the use of low-temperature plasma in skin treatment can be considered as safe. Overall, the results show that the plasma nozzle can find use in medicine in the healing of skin wounds and chronic defects as a potentially fast, inexpensive and effective method.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Plasma nozzle"

1

York, Thomas M. The effects of magnetic nozzle configurations on plasma thrusters: Semi-annual progress report. Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1990.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Turchi, Peter J. The effects of magnetic nozzle configurations on plasma thrusters: Final report, grant/contract no.: NAG3-843. [Washington, DC: National Aeronautics and Space Administration, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

United States. National Aeronautics and Space Administration., Hrsg. Semi annual program report on the effects of magnetic nozzle configurations of plasma thrusters. [Washington, DC: National Aeronautics and Space Administration, 1988.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Metcalf, Myers Roger, und Lewis Research Center, Hrsg. Nonequilibrium in a low power arcjet nozzle. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Plasma nozzle"

1

Hagiwara, Tatsumasa, Yoshihiro Kajimura, Yuya Oshio, Ikkoh Funaki und Hiroshi Yamakawa. „Performance Evaluation of Magnetic Nozzle by Using Thermal Plasma“. In Lecture Notes in Electrical Engineering, 1990–98. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3305-7_160.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kimura, M., und K. Okuyama. „Influence of Nozzle Exit Velocity Distribution on Flame Stability Using a Coaxial DBD Plasma Actuator“. In Fluid-Structure-Sound Interactions and Control, 235–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-48868-3_38.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Chen, Rong Fa, Dun Wen Zuo, Duo Sheng Li, Bing Kun Xiang, Li Gang Zhao und Min Wang. „Effects of Methane Concentration on Growth of Carbon Balls in Anode Nozzle and Arc Stability of DCPJ CVD Plasma Torch“. In Advances in Machining & Manufacturing Technology VIII, 742–47. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-999-7.742.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Sauer, K., K. Baumgärtel, Th Roatsch und J. F. McKenzie. „Laval nozzle effects in solar wind-exosphere interaction“. In Space Plasmas: Coupling Between Small and Medium Scale Processes, 43–47. Washington, D. C.: American Geophysical Union, 1995. http://dx.doi.org/10.1029/gm086p0043.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Lucian Toma, Stefan, Radu Armand Haraga, Daniela Lucia Chicet, Viorel Paleu und Costica Bejinariu. „Hard Alloys with High Content of WC and TiC—Deposited by Arc Spraying Process“. In Welding - Modern Topics [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.94605.

Der volle Inhalt der Quelle
Annotation:
Obtained by different spraying technologies: in atmospheric plasma spray, High Velocity Oxygen Fuel (HVOF) or laser cladding, the layers of hard alloys with a high content of WC and TiC find their industrial applications due to their high hardness and resistance to wear. Recognized as being a process associated with welding, the arc spraying process is a method applied industrially both in obtaining new surfaces and for reconditioning worn ones. This chapter presents the technology for obtaining ultra-hard layers based on WC and TiC - by the arc spraying process, using a classic spray device equipped with a conical nozzle system and tubular wire additional material containing ultra-hard compounds (WC, TiC). To study both the quality of deposits and the influence of thermal spray process parameters on the properties of deposits with WC and TiC content, we approached various investigative techniques, such as optical scanning microscopy (SEM), X-ray diffraction, and determination of adhesion, porosity, Vickers micro-hardness and wear resistance.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

„Space Plasma Thrusters: Magnetic Nozzles for“. In Encyclopedia of Plasma Technology, 1329–51. CRC Press, 2016. http://dx.doi.org/10.1081/e-eplt-120053936.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Plasma nozzle"

1

Xi, J., G. Krishnappa und C. Moreau. „Monitoring of Nozzle Wear during Plasma Spray“. In ITSC 1997, herausgegeben von C. C. Berndt. ASM International, 1997. http://dx.doi.org/10.31399/asm.cp.itsc1997p0413.

Der volle Inhalt der Quelle
Annotation:
Abstract Presented in this paper are the results of preliminary experiments carried out for monitoring of plasma nozzle wear. The experiment system consists of two microphones, one accelerometer and voltage measurement. In the experiment, three nozzles were tested, new, used and worn. The test results show clearly the difference in acoustic characteristics with wear in the nozzle. Some observations obtained from the experiment include: 1) the microphone mounted at 45° may be the best choice for nozzle wear monitoring; 2) voltage signal could be used with the 45° microphone as an indicator for severe nozzle wear; 3) vibration signal is not as sensitive to nozzle wear as 45° microphone and voltage signal; and 4) the 90° microphone is insensitive to nozzle wear.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

HOOPER, E. „Plasma detachment from a magnetic nozzle“. In 27th Joint Propulsion Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-2590.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Gerwin, Richard A. „Integrity of the plasma magnetic nozzle“. In 2010 IEEE 37th International Conference on Plasma Sciences (ICOPS). IEEE, 2010. http://dx.doi.org/10.1109/plasma.2010.5534049.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Inutake, Masaaki. „Magnetic-Laval-Nozzle Effect on a Magneto-Plasma-Dynamic Arcjet“. In PLASMA PHYSICS: 11th International Congress on Plasma Physics: ICPP2002. AIP, 2003. http://dx.doi.org/10.1063/1.1593926.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

YORK, THOMAS, PAVLOS MIKELLIDES und BARRY JACOBY. „Plasma flow processes within magnetic nozzle configurations“. In 25th Joint Propulsion Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-2711.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Deline, C. A., B. E. Gilchrist und G. Chavers. „Plasma expansion in a paraxial magnetic nozzle“. In The 33rd IEEE International Conference on Plasma Science, 2006. ICOPS 2006. IEEE Conference Record - Abstracts. IEEE, 2006. http://dx.doi.org/10.1109/plasma.2006.1706964.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Merino, M., und E. Ahedo. „Plasma detachment mechanisms in a magnetic nozzle“. In 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/6.2011-5999.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Sheehan, J. P., Benjamin W. Longmier, Edgar A. Bering, Christopher S. Olsen, Jared P. Squire, Mark D. Carter, Leonard D. Cassady et al. „Adiabatic plasma expansion in a magnetic nozzle“. In 2014 IEEE 41st International Conference on Plasma Sciences (ICOPS) held with 2014 IEEE International Conference on High-Power Particle Beams (BEAMS). IEEE, 2014. http://dx.doi.org/10.1109/plasma.2014.7012590.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Renault, T., und N. Hussary. „Effects of Nozzle Diameter, Nozzle Length, Standoff Distance and Secondary Flow on Plasma Cutting Speed“. In IEEE Conference Record - Abstracts. 2005 IEEE International Conference on Plasma Science. IEEE, 2005. http://dx.doi.org/10.1109/plasma.2005.359523.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Dietrich, Carl C. „A Magnetic Nozzle and Diverter Electrode to Improve Penning Fusion Efficiency“. In NON-NEUTRAL PLASMA PHYSICS V: Workshop on Non-Neutral Plasmas. AIP, 2003. http://dx.doi.org/10.1063/1.1635184.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Plasma nozzle"

1

Earl Scime. Final Technical Report - Development of a tunable diode laser induced fluorescence diagnostic for the Princeton magnetic nozzle experiment: West Virginia University and Princeton Plasma Physics Laboratory. Office of Scientific and Technical Information (OSTI), November 2006. http://dx.doi.org/10.2172/894671.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Ahedo, Eduardo, und Mario Merino. Plasma Detachment Mechanisms in Propulsive Magnetic Nozzles. Fort Belvoir, VA: Defense Technical Information Center, März 2013. http://dx.doi.org/10.21236/ada582517.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Gerwin, R. A., G. J. Marklin, A. G. Sgro und A. H. Glasser. Characterization of Plasma Flow Through Magnetic Nozzles. Office of Scientific and Technical Information (OSTI), Februar 1990. http://dx.doi.org/10.2172/763033.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Ahedo, Eduardo A., und Mario Merino. Magnetic Nozzles for Plasma Thrusters: Acceleration, Thrust, and Detachment Mechanisms. Fort Belvoir, VA: Defense Technical Information Center, Oktober 2011. http://dx.doi.org/10.21236/ada552527.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Butcher, Thomas, und Michael Furey. Development and Validation of Plasma Fuel Nozzles for Gas Turbine and Boiler Applications. Office of Scientific and Technical Information (OSTI), Juli 2013. http://dx.doi.org/10.2172/1095289.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie