Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Plasma activation grafting“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Plasma activation grafting" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Plasma activation grafting"
Chang, Juu En, Yi Kuo Chang, Min Her Leu, Ying Liang Chen und Jing Hong Huang. „Application of Ambient-Temperature Argon Plasma Modified PET Fibers with Surface Grafting for Heavy Metal Removal“. Advanced Materials Research 978 (Juni 2014): 153–56. http://dx.doi.org/10.4028/www.scientific.net/amr.978.153.
Der volle Inhalt der QuelleDas, B. „Cold plasma activation and silane grafting on a moving fiber glass bundle*“. Journal of Adhesion Science and Technology 10, Nr. 12 (Januar 1996): 1371–82. http://dx.doi.org/10.1163/156856196x00300.
Der volle Inhalt der QuelleAlonso, Janaína G., Carla Dalmolin, Jacimar Nahorny, Abel A. C. Recco, Luis C. Fontana und Daniela Becker. „Active screen plasma system applied to polymer surface modification: poly(lactic acid) surface activation before polyaniline graft polymerization in aqueous medium“. Journal of Polymer Engineering 38, Nr. 8 (28.08.2018): 795–802. http://dx.doi.org/10.1515/polyeng-2017-0298.
Der volle Inhalt der QuelleShalaby, Marwa S., Heba Abdallah, Ralph Wilken, Schmüser Christoph und Ahmed M. Shaban. „Surface Treatment by Physical Irradiation for Antifouling, Chlorine-Resistant RO Membranes“. Membranes 13, Nr. 2 (13.02.2023): 227. http://dx.doi.org/10.3390/membranes13020227.
Der volle Inhalt der QuelleHoel, Tom N., Vibeke Videm, Tom E. Mollnes, Kjell Saatvedt, Frank Brosstad, Arnt E. Fiane, Erik Fosse und Jan L. Svennevig. „Off-pump cardiac surgery abolishes complement activation“. Perfusion 22, Nr. 4 (Juli 2007): 251–56. http://dx.doi.org/10.1177/0267659107084142.
Der volle Inhalt der QuelleMedvedeva, E. A., L. G. Gelis, V. V. Shumavets und I. I. Russkikh. „CLINICAL OUTCOMES AND DYNAMICS OF PLATELET-PLASMA AND VASCULAR HEMOSTASIS IN PATIENTS WITH UNSTABLE ANGINA AND CORONARY ARTERY BYPASS GRAFTING“. Eurasian heart journal, Nr. 1 (28.02.2021): 78–86. http://dx.doi.org/10.38109/2225-1685-2021-1-78-86.
Der volle Inhalt der QuelleSingh, Sukhdeep, Patrick Mai, Justyna Borowiec, Yixin Zhang, Yong Lei und Andreas Schober. „Donor–acceptor Stenhouse adduct-grafted polycarbonate surfaces: selectivity of the reaction for secondary amine on surface“. Royal Society Open Science 5, Nr. 7 (Juli 2018): 180207. http://dx.doi.org/10.1098/rsos.180207.
Der volle Inhalt der QuelleAsadian, Mahtab, Ke Vin Chan, Mohammad Norouzi, Silvia Grande, Pieter Cools, Rino Morent und Nathalie De Geyter. „Fabrication and Plasma Modification of Nanofibrous Tissue Engineering Scaffolds“. Nanomaterials 10, Nr. 1 (08.01.2020): 119. http://dx.doi.org/10.3390/nano10010119.
Der volle Inhalt der QuelleWahba, Alexander, Gregor Black, Mario Koksch, Gregor Rothe, Jürgen Preuner, Gred Schmitz und Dietrich E. Bimbaum. „Aprotinin Has no Effect on Platelet Activation and Adhesion during Cardiopulmonary Bypass“. Thrombosis and Haemostasis 75, Nr. 05 (1996): 844–48. http://dx.doi.org/10.1055/s-0038-1650377.
Der volle Inhalt der QuelleČernáková, L’, D. Kováčik, A. Zahoranová, M. Černák und M. Mazúr. „Surface Modification of Polypropylene Non-Woven Fabrics by Atmospheric-Pressure Plasma Activation Followed by Acrylic Acid Grafting“. Plasma Chemistry and Plasma Processing 25, Nr. 4 (August 2005): 427–37. http://dx.doi.org/10.1007/s11090-004-3137-4.
Der volle Inhalt der QuelleDissertationen zum Thema "Plasma activation grafting"
Wei, Tianyue. „Modification of terpenoid molecules to enhance antibacterial properties of polymer surfaces“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASF065.
Der volle Inhalt der QuelleEssential oils are potential biosourced candidates to be grafted on polymer surfaces to fight against bacterial infections by either restricting the growth of bacteria (bacteriostatic effect) or killing bacterial cells (bactericidal effect). This thesis deals with the modification of terpenoid molecules intended to be grafted on polymer-activated surfaces. We eager to graft modified EO molecules onto polymer surface through strong covalent bonding, facilitated by plasma treatment technology. Citronellol (CT) and geraniol (GR) were chosen for their antimicrobial activity and were successfully modified to obtain better reactive function towards polymer grafting. They were transformed into CT-oxide and GR-oxide through an accessible and green chemo enzymatic oxidation method. Microbiological tests were undertaken to estimate the antibacterial effects of CT and GR before and after modification. Three bacterial species have been used: Escherichia coli, Staphylococcus aureus and Corynebacterium glutamicum. The results showed that antibacterial effects remained after epoxidation, tested molecules exhibited antibacterial activities by targeting bacterial cell envelopes, disrupting membrane integrity, and altering hydrophobicity. These actions led to the inhibition of bacterial growth or death of the bacteria, as evidenced by Zeta Potential measurements, Scanning Electron Microscopy imaging, and surface energy assessments. Our study conclusively confirmed the antibacterial effectiveness of CT-ox and GR-ox against three bacterial strains. Furthermore, those modified terpenoid molecules have potential to graft on the polymer surface and provide polymer antimicrobial property