Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Plants, Effect of gibberellins on“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Plants, Effect of gibberellins on" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Plants, Effect of gibberellins on"
Wang, Bing, und Alan R. Langille. „Response of a Gibberellin-deficient Potato Mutant to Induction and Growth Regulators as a Working Model for Tuber Initiation“. HortScience 42, Nr. 3 (Juni 2007): 540–43. http://dx.doi.org/10.21273/hortsci.42.3.540.
Der volle Inhalt der QuelleMignolli, Francesco, Graciela Beatriz Rojas und María Laura Vidoz. „Supraoptimal ethylene acts antagonistically with exogenous gibberellins during Solanum lycopersicum (Solanaceae) hypocotyl growth.“ Boletín de la Sociedad Argentina de Botánica 51, Nr. 2 (15.06.2016): 235–42. http://dx.doi.org/10.31055/1851.2372.v51.n2.14836.
Der volle Inhalt der QuelleWiseman, Nadine J., und Colin G. N. Turnbull. „Effects of photoperiod and paclobutrazol on growth dynamics of petioles in strawberry (Fragaria × ananassa)“. Functional Plant Biology 26, Nr. 4 (1999): 353. http://dx.doi.org/10.1071/pp98001.
Der volle Inhalt der QuelleHan, Jennifer, Jan E. Murray, Qingyi Yu, Paul H. Moore und Ray Ming. „The Effects of Gibberellic Acid on Sex Expression and Secondary Sexual Characteristics in Papaya“. HortScience 49, Nr. 3 (März 2014): 378–83. http://dx.doi.org/10.21273/hortsci.49.3.378.
Der volle Inhalt der QuelleSabovljevic, Aneta, Marko Sabovljevic und D. Grubisic. „Gibberellin influence on the morphogenesis of the moss Bryum argenteum Hedw. in in vitro conditions“. Archives of Biological Sciences 62, Nr. 2 (2010): 373–80. http://dx.doi.org/10.2298/abs1002373s.
Der volle Inhalt der QuelleJaques, Lanes B. A., Ivan R. Carvalho, Vinícius J. Szareski, João R. Pimentel, Cristian Troyjack, Simone M. Dellagostin, Mayara T. Mendonça et al. „Gibberellic Acid Utilization in Seeds and Plants of Beans: Effect on Growth and Seeds Physiological Quality“. Journal of Agricultural Science 11, Nr. 2 (15.01.2019): 541. http://dx.doi.org/10.5539/jas.v11n2p541.
Der volle Inhalt der QuelleZhang, L., S. Rajapakse, R. E. Ballard und N. C. Rajapakse. „Light Quality Regulation of Gene Expression in Chrysanthemum“. HortScience 33, Nr. 3 (Juni 1998): 446c—446. http://dx.doi.org/10.21273/hortsci.33.3.446c.
Der volle Inhalt der QuelleMiceli, Alessandro, Alessandra Moncada, Leo Sabatino und Filippo Vetrano. „Effect of Gibberellic Acid on Growth, Yield, and Quality of Leaf Lettuce and Rocket Grown in a Floating System“. Agronomy 9, Nr. 7 (16.07.2019): 382. http://dx.doi.org/10.3390/agronomy9070382.
Der volle Inhalt der QuelleHarkess, Richard L., und Robert E. Lyons. „Gibberellin- and Cytokinin-induced Growth and Flowering Responses in Rudbeckia hirta L.“ HortScience 29, Nr. 3 (März 1994): 141–42. http://dx.doi.org/10.21273/hortsci.29.3.141.
Der volle Inhalt der Quelleda Silva, Gustavo Cabral, Ivan de-la-Cruz-Chacón, Ana Beatriz Marques Honório, Bruna Cavinatti Martin, Marília Caixeta Sousa, Felipe Girotto Campos, Carmen Sílvia Fernandes Boaro und Gisela Ferreira. „Temperature and GA3 as Modulating Factors in the Biosynthesis of Alkaloids during Imbibition and Early Development of Annona x atemoya Mabb. cv. ‘Gefner’ Seedlings“. Horticulturae 8, Nr. 9 (26.08.2022): 766. http://dx.doi.org/10.3390/horticulturae8090766.
Der volle Inhalt der QuelleDissertationen zum Thema "Plants, Effect of gibberellins on"
Darwiche, Amal Omar 1964. „Effect of cytokinin, gibberellin, and nitrogen applications on the growth of eldarica pine seedlings“. Thesis, The University of Arizona, 1989. http://hdl.handle.net/10150/276979.
Der volle Inhalt der QuelleBezuidenhout, Johannes Jacobus. „Elucidating the dual physiological induced effect of gliotoxin on plants / Johannes Jacobus Bezuidenhout“. Thesis, North-West University, 2011. http://hdl.handle.net/10394/6945.
Der volle Inhalt der QuelleThesis (Ph.D. (Microbiology))--North-West University, Potchefstroom Campus, 2012.
Buzzello, Gederson Luiz. „Uso de reguladores no controle do crescimento e no desempenho agronômico da cultura da soja cultivar CD 214 RR“. Universidade Tecnológica Federal do Paraná, 2010. http://repositorio.utfpr.edu.br/jspui/handle/1/240.
Der volle Inhalt der QuelleThe lodging of plants causes significant losses in grain yield of soybean and therefore management strategies to minimize the lodging are important in agriculture today. The aim of this work was to study the action of reducers of plant growth on lodging and other agronomic characteristics of soybean CD 214 RR at sowing dates and different densities. Two experiments were conducted at the Experimental Station of the Federal Technological University of Paraná, Pato Branco Campus. In the first experiment, testing different reducers of growth under different concentrations. The experimental design was completely andomized thirty-one treatments and four replicates. The four best combinations of concentrations in this experiment were used in the second experiment. The second experiment was conducted in a randomized block design with 3 replicates in a 5x3x3 factorial design, where the first factor corresponding to four combinations of concentrations selected in the first experiment (and also the control), the second factor corresponded to three different sowing dates (01 November, 15 November, and December 11), the third factor corresponded to three different plant densities in the final population for each density was 200.000, 300.000 and 400.000 plants ha-1. The first experiment examined the lodging, injury and plant height during the development of the culture. In the second experiment also evaluated these variables at the end of the cycle. In the first experiment samples were collected from plants in 0,45 m2 in each parcel, for later determination of yield components, the stage R9. A sample was collected at the R8 stage, represented by 10 plants per plot, which was obtained harvest index and biological yield apparent. In both experiments, the R9 stage of culture, there was the harvest of the remainder of each parcel to determine the yield. The data were subjected to analysis of variance by F test and were compared by means of comparison tests of means. The relationship between dependent and independent variables was adjusted by polynomial regression. All treatments in all six groups retardant were efficient in controlling the lodging for most of the crop cycle. The precursor of ethylene group caused a greater degree of phytotoxicity to the crop. The compounds of auxin inhibitors, protox and biostimulators (IBA, GA3 and kinetin) were able to reduce height and lodging, with slight degree of phytotoxicity and with rapid recovery of symptoms injury. Reducers trinexapac ethyl (312.5 g ha-1), IBA +GA3 +kinetin (0.0375, 0.0375 and 0.0675 g ha-¹) and lactofen (144 g ha-1) resulted in yield higher. Individually, the three concentrations of ethephon studied have a lower number of pods per plant, lower weight and lower grain yield. The effects of growth regulators on yield and components were dependent on the levels at which they are applied on the soybean plants. Eleven treatments accounted for the group the higher yield, among them the trinexapac ethyl (312.5 g ha-1), IBA GA3 kinetin (0.0375, 0.0375 and 0.0675 g ha-¹) and lactofen (144 g ha-1). Among all the treatments, the plants that received the three concentrations of ethephon studied have a lower number of pods per plant, lower weight and lower grain yield. The lactofen (144 g ha- 1) provided greater reduction in height, plants sown in the first (01/11/08) and third time (11/12/08). Since the chloride doses (250 g ha-1) was more effective in reducing plant height of the third sowing date (11/12/08). Smallest lodging occurred in the second sowing date, density of 200.000 plants ha-1. Considering the average densities and sowing dates, regulators TIBA (6 g ha-1), lactofen (144 g ha-1) and IBA +GA3+Kinetin (0.0375+0.0375+0.0675 g ha-1) showed the best performance in reducing lodging. The highest yield of soybean at sowing occurred on December 11 and is not influenced by the density of plants at this time. The lower yield in soybean planting occurred in early November, with a density of 400.000 plants ha-1. In the second experiment, plants of all treatments with growth retardant had no symptoms of injury in the assessment at the R1 stage of culture.
Ertekin, Ozlem. „The Effect Of Indole Acetic Acid, Abscisic Acid, Gibberellin And Kinetin On The Expression Of Arf1 Gtp Binding Protein Of Pea (pisum Sativum L. Cv. Araka)“. Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608902/index.pdf.
Der volle Inhalt der QuelleM of each hormone for 3 times on alternate days. Protein extraction, cell fractionation,Western blot was carried out and immunoblot analysis was conducted with AtARF1 polyclonal antibodies. It was shown that, in pea shoots, abscisic acid and gibberellin increases the inactive GDP bound ARF1 by hydrolyzing ARF-GTP through activating ARFGTPase activating protein (ARF-GAP) or partially inhibiting ARF-Guanine Nucleotide Exchange Factor (ARF-GEF). In roots, ARF-GDP (cytosolic fraction), ARF-GTP (microsomal fraction) and total amount of ARF1 (13.000 x g supernatant fraction) were down regulated by ~11, ~19 and ~11 fold respectively with the application of gibberellin
and by ~11, ~7 and ~3 fold respectively with the application of abscisic acid
when compared to control plants. These results indicate the importance of plant hormones in the regulation of ARF1 in pea.
Johnson, Kerry. „Photoperiod induction, Gibberellic acid, mulch and row cover effects on fresh cut flower production of three Rudbeckia hirta L. cultivars“. Diss., Mississippi State : Mississippi State University, 2006. http://sun.library.msstate.edu/ETD-db/ETD-browse/browse.
Der volle Inhalt der QuelleSakhatska, I. M. „Study of medicinal plants with sedative effect“. Thesis, БДМУ, 2021. http://dspace.bsmu.edu.ua:8080/xmlui/handle/123456789/18909.
Der volle Inhalt der QuelleDickson, Ross L. „The effect of water stress, nitrogen and gibberellic acid on the phytotoxicity of post-emergent herbicides to Avena spp“. Lincoln University, 1990. http://hdl.handle.net/10182/1283.
Der volle Inhalt der QuelleChakauya, Ereck. „Effect of manipulating pantothenate biosynthesis in higher plants“. Thesis, University of Cambridge, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.614866.
Der volle Inhalt der QuelleCamut, Lucie. „Rôle des gibbérellines dans l’adaptation des plantes à la disponibilité en azote“. Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAJ109.
Der volle Inhalt der QuelleThe phytohormones gibberellins (GAs) regulate major aspects of plant growth and development in response to endogenous and exogenous signals. GAs promote growth by stimulating the degradation of nuclear growth repressing DELLA proteins. Nitrogen (N), a macronutrient essential for plant development, is one of the most limiting factors for agricultural productivity. Nitrate (NO3-) represents the main N source for cultivated plants but its availability fluctuates in both time and space due to its high solubility. Since the Green Revolution in the 1960’s, the use of N-fertilizers associated with high-yielding semi-dwarf cereal varieties, altered in GA responses, led to impressive yield increases. Recently, it has been reported that some NO 3 - transporters belonging to the NPF family (NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER FAMILY), were able to transport GAs. Despite these observations, the effect of nitrate on GA biosynthesis, transport and signaling pathway is still unknown. Using genetics, molecular and biochemical approaches performed in Arabidopsis and wheat, this thesis work demonstrates that nitrate activates GA biosynthesis and GA12 transport (an inactive GA precursor), and as a consequence, DELLA protein degradation. The reduction in DELLA abundance increases cell division rate and thus plant growth. Moreover, through micrograftings and GA import assays in Xenopus laevis oocytes, we show that NPF2.12 and NPF2.13 facilitate the basipetal transport of GA12 and nitrate. Finally, we show that GA12 transport is enhanced by a small elevation of the ambient temperature. Altogether, these results reveal that GA biosynthesis and transport are tightly regulated in response to nitrate availability and temperature changes, enabling adaptive and optimal growth of the plant
Voss, Joshua. „Forage adaptability trials for forage and seed production in Bolivia : effect of 5 herbicides on 7 native Utah forbs /“. Diss., CLICK HERE for online access, 2006. http://contentdm.lib.byu.edu/ETD/image/etd1639.pdf.
Der volle Inhalt der QuelleBücher zum Thema "Plants, Effect of gibberellins on"
Hall, J. Peter. Flower promotion in black spruce seedlings using gibberellins. St John's: Newfoundland Forestry Centre, 1986.
Den vollen Inhalt der Quelle findenDuckett, Catherine Mary. The effects of gibberellic acid on plant molecules. Norwich: University of East Anglia, 1992.
Den vollen Inhalt der Quelle findenAftab, Tariq, Hrsg. Auxins, Cytokinins and Gibberellins Signaling in Plants. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05427-3.
Der volle Inhalt der QuelleBig leaves for exotic effect. Lewes: Guild of Master Craftsman Publications, 2003.
Den vollen Inhalt der Quelle findenPhotobiology of higher plants. Chichester: J. Wiley, 2004.
Den vollen Inhalt der Quelle findenN, Singh S., Hrsg. Trace gas emissions and plants. Dordrecht, The Netherlands: Kluwer Academic, 2000.
Den vollen Inhalt der Quelle findenMishra, S. K., und S. K. Mishra. Industrial pollution and plants. New Delhi: Ashish Pub. House, 1993.
Den vollen Inhalt der Quelle findenEuropean Conference on Chemistry and the Environment (2nd 1984 Lindau, Bavaria, Germany). Air pollution and plants. Deerfield Beach, FL, USA: VCH Publishers, 1985.
Den vollen Inhalt der Quelle findenM, Orcutt David, und Hale Maynard G, Hrsg. The physiology of plants under stress. New York: Wiley, 1996.
Den vollen Inhalt der Quelle findenCunningham, J. D. Chernobyl: Its effect on Ireland. Dublin: Nuclear Energy Board, 1987.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Plants, Effect of gibberellins on"
Izumi, K., und H. Oshio. „Effects of the Growth Retardant Uniconazole-P on Endogenous Levels of Hormones in Rice Plants“. In Gibberellins, 330–38. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-3002-1_32.
Der volle Inhalt der QuelleKamada, H., T. Ogasawara und H. Harada. „Effects of Gibberellin A3 on Growth and Tropane Alkaloid Synthesis in Ri Transformed Plants of Datura innoxia“. In Gibberellins, 241–48. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-3002-1_23.
Der volle Inhalt der QuelleKatsura, N., K. Takayanagi, T. Sato, T. Nishijima und H. Yamaji. „Gibberellin-Induced Flowering and Morphological Changes in Taro Plants“. In Gibberellins, 370–77. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-3002-1_36.
Der volle Inhalt der QuelleJunttila, O. „Gibberellins and the Regulation of Shoot Elongation in Woody Plants“. In Gibberellins, 199–210. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-3002-1_19.
Der volle Inhalt der QuelleSubroto, M. Ahkam, und Pauline M. Doran. „Production of steroidal alkaloids by hairy roots of Solanum aviculare and the effect of gibberellic acid“. In Primary and Secondary Metabolism of Plants and Cell Cultures III, 93–102. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0237-7_2.
Der volle Inhalt der QuelleSponsel, Valerie M., und James B. Reid. „The effect of the growth retardant LAB 198 999 and its interaction with gibberellins A1, A3, and A20 in fruit growth of tall and dwarf peas“. In Progress in Plant Growth Regulation, 578–84. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2458-4_69.
Der volle Inhalt der QuelleHooley, Richard. „Gibberellins: perception, transduction and responses“. In Signals and Signal Transduction Pathways in Plants, 293–319. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0239-1_17.
Der volle Inhalt der QuelleGhassemi-Golezani, Kazem, und Samira Samea-Andabjadid. „Cytokinin Signaling in Plants Under Salt Stress“. In Auxins, Cytokinins and Gibberellins Signaling in Plants, 189–212. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05427-3_8.
Der volle Inhalt der QuelleOzga, Jocelyn A., Mark L. Brenner und Dennis Reinecke. „Characterization of the effect of seeds on gibberellin metabolism in pea pericarp“. In Progress in Plant Growth Regulation, 591–96. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2458-4_71.
Der volle Inhalt der QuelleDaramola, Olumide Samuel, Abraham Attah Shaibu und Vimal Kumar Semwal. „Iron Toxicity Tolerance in Rice: Roles of Auxins and Gibberellins“. In Auxins, Cytokinins and Gibberellins Signaling in Plants, 337–51. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05427-3_15.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Plants, Effect of gibberellins on"
Kotova, L. M., und A. A. Kotov. „THE ROLE OF GIBBERELLINS IN CORRELATIVE INTERACTIONS BETWEEN THE SHOOTS OF PEA PLANTS“. In The All-Russian Scientific Conference with International Participation and Schools of Young Scientists "Mechanisms of resistance of plants and microorganisms to unfavorable environmental". SIPPB SB RAS, 2018. http://dx.doi.org/10.31255/978-5-94797-319-8-443-447.
Der volle Inhalt der QuelleButler, A. D., C. C. Thomas, V. F. Medina und S. L. Larson. „The Effect of Plants on Lead Dissolution“. In GeoFlorida 2010. Reston, VA: American Society of Civil Engineers, 2010. http://dx.doi.org/10.1061/41095(365)277.
Der volle Inhalt der QuelleSerag-Eldin, Mohamed A., und Mohammed A. Abdul Latif. „Magnus-Effect Rotors for Solar Chimney Power Plants“. In ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-31064.
Der volle Inhalt der QuelleMarkova, Yu A., V. N. Nurminsky, I. S. Nesterkina, N. V. Ozolina, A. L. Tourskaya, V. A. Bybin, I. V. Klimenkov, L. A. Belovezovets und M. S. Tretyakova. „The effect of colchicine on microorganisms“. In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-279.
Der volle Inhalt der QuelleSvistova, I. D., und N. M. Kuvshinova. „Phytosanitary effect of the plants – producers of sweet glycosides“. In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.241.
Der volle Inhalt der QuelleSymochko, Lyudmyla, Ruslan Mariychuk, Olena Demyanyuk und Vitaliy Symochko. „Enrofloxacin in Agroecosystems: Uptake by Plants and Phytotoxical Effect“. In 2019 International Council on Technologies of Environmental Protection (ICTEP). IEEE, 2019. http://dx.doi.org/10.1109/ictep48662.2019.8968989.
Der volle Inhalt der QuelleArifin, Zainal. „The effect of liquid NPK fertilizing on corn plants“. In INTERNATIONAL CONFERENCE ON BIOLOGY AND APPLIED SCIENCE (ICOBAS). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5115617.
Der volle Inhalt der Quelle„Study on Humidification and Cooling Effect of Garden Plants“. In 2018 4th International Conference on Education, Management and Information Technology. Francis Academic Press, 2018. http://dx.doi.org/10.25236/icemit.2018.262.
Der volle Inhalt der QuelleEfimova, M. V. „The protective effect of brassinosteroids in chloride salinity“. In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-168.
Der volle Inhalt der QuelleHENRIQUE CABRAL DETTMER, PAULO, CARLOS OLAVO SLOTA OVELAR, MARCELO LUIZ NORILLER, JOSE JUNJI OTA und CLAUDIONOR FERNANDES CHAVES. „Computational and Experimental Modeling of Ejection Effect in Hydroelectric Plants“. In 38th IAHR World Congress. The International Association for Hydro-Environment Engineering and Research (IAHR), 2019. http://dx.doi.org/10.3850/38wc092019-0379.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Plants, Effect of gibberellins on"
Friedman, Haya, Chris Watkins, Susan Lurie und Susheng Gan. Dark-induced Reactive Oxygen Species Accumulation and Inhibition by Gibberellins: Towards Inhibition of Postharvest Senescence. United States Department of Agriculture, Dezember 2009. http://dx.doi.org/10.32747/2009.7613883.bard.
Der volle Inhalt der QuelleKirova, Elisaveta. Effect of Nitrogen Nutrition Source on Antioxidant Defense System of Soybean Plants Subjected to Salt Stress. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, Februar 2020. http://dx.doi.org/10.7546/crabs.2020.02.09.
Der volle Inhalt der QuelleGarcía Victoria, Nieves, Esteban Baeza Romero, Geert Franken, Silke Hemming und Gert Vletter. Effect of high scattering lamellae on growthand photosynthesis of young tomato plants : smart materials crop experiments. Bleiswijk: Stichting Wageningen Research, Wageningen Plant Research, Business Unit Greenhouse Horticulture, 2020. http://dx.doi.org/10.18174/564877.
Der volle Inhalt der QuellePalukaitis, Peter, Amit Gal-On, Milton Zaitlin und Victor Gaba. Virus Synergy in Transgenic Plants. United States Department of Agriculture, März 2000. http://dx.doi.org/10.32747/2000.7573074.bard.
Der volle Inhalt der QuelleGrumet, Rebecca, Rafael Perl-Treves und Jack Staub. Ethylene Mediated Regulation of Cucumis Reproduction - from Sex Expression to Fruit Set. United States Department of Agriculture, Februar 2010. http://dx.doi.org/10.32747/2010.7696533.bard.
Der volle Inhalt der QuelleCitovsky, Vitaly, und Yedidya Gafni. Nuclear Import of the Tomato Yellow Curl Leaf Virus in Tomato Plants. United States Department of Agriculture, September 1994. http://dx.doi.org/10.32747/1994.7568765.bard.
Der volle Inhalt der QuelleValverde, Rodrigo A., Aviv Dombrovsky und Noa Sela. Interactions between Bell pepper endornavirus and acute viruses in bell pepper and effect to the host. United States Department of Agriculture, Januar 2014. http://dx.doi.org/10.32747/2014.7598166.bard.
Der volle Inhalt der QuelleMudge, Christopher R., Kurt D. Getsinger und Benjamin P. Sperry. Simulated Herbicide Spray Retention on Floating Aquatic Plants as Affected by Carrier Volume and Adjuvant Type. U.S. Army Engineer Research and Development Center, Juni 2022. http://dx.doi.org/10.21079/11681/44540.
Der volle Inhalt der QuelleWeiss, David, und Neil Olszewski. Manipulation of GA Levels and GA Signal Transduction in Anthers to Generate Male Sterility. United States Department of Agriculture, 2000. http://dx.doi.org/10.32747/2000.7580678.bard.
Der volle Inhalt der QuelleFarazi, Mena, Michael Houghton, Margaret Murray und Gary Williamson. Systematic review of the inhibitory effect of extracts from edible parts of nuts on α-glucosidase activity. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, August 2022. http://dx.doi.org/10.37766/inplasy2022.8.0061.
Der volle Inhalt der Quelle