Auswahl der wissenschaftlichen Literatur zum Thema „Plant viruses Control“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Plant viruses Control" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Plant viruses Control":

1

Bradamante, Gabriele, Ortrun Mittelsten Scheid und Marco Incarbone. „Under siege: virus control in plant meristems and progeny“. Plant Cell 33, Nr. 8 (20.05.2021): 2523–37. http://dx.doi.org/10.1093/plcell/koab140.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract In the arms race between plants and viruses, two frontiers have been utilized for decades to combat viral infections in agriculture. First, many pathogenic viruses are excluded from plant meristems, which allows the regeneration of virus-free plant material by tissue culture. Second, vertical transmission of viruses to the host progeny is often inefficient, thereby reducing the danger of viral transmission through seeds. Numerous reports point to the existence of tightly linked meristematic and transgenerational antiviral barriers that remain poorly understood. In this review, we summarize the current understanding of the molecular mechanisms that exclude viruses from plant stem cells and progeny. We also discuss the evidence connecting viral invasion of meristematic cells and the ability of plants to recover from acute infections. Research spanning decades performed on a variety of virus/host combinations has made clear that, beside morphological barriers, RNA interference (RNAi) plays a crucial role in preventing—or allowing—meristem invasion and vertical transmission. How a virus interacts with plant RNAi pathways in the meristem has profound effects on its symptomatology, persistence, replication rates, and, ultimately, entry into the host progeny.
2

Falk, Bryce W., und Shahideh Nouri. „Special Issue: “Plant Virus Pathogenesis and Disease Control”“. Viruses 12, Nr. 9 (21.09.2020): 1049. http://dx.doi.org/10.3390/v12091049.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Plant viruses are emerging and re-emerging to cause important diseases in many plants that humans grow for food and/or fiber, and sustainable, effective strategies for controlling many plant virus diseases remain unavailable [...]
3

Dreher, Theo W., und W. Allen Miller. „Translational control in positive strand RNA plant viruses“. Virology 344, Nr. 1 (Januar 2006): 185–97. http://dx.doi.org/10.1016/j.virol.2005.09.031.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Navas-Castillo, Jesús, und Elvira Fiallo-Olivé. „Special Issue “Plant Viruses: From Ecology to Control”“. Microorganisms 9, Nr. 6 (25.05.2021): 1136. http://dx.doi.org/10.3390/microorganisms9061136.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

V, Maksimov I., Sorokan A. V, Burkhanova G. F, Veselova S. V, Alekseev V. Yu, Shein M. Yu, Avalbaev A. M et al. „Mechanisms of Plant Tolerance to RNA Viruses Induced by Plant-Growth-Promoting Microorganisms“. Plants 8, Nr. 12 (05.12.2019): 575. http://dx.doi.org/10.3390/plants8120575.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Plant viruses are globally responsible for the significant crop losses of economically important plants. All common approaches are not able to eradicate viral infection. Many non-conventional strategies are currently used to control viral infection, but unfortunately, they are not always effective. Therefore, it is necessary to search for efficient and eco-friendly measures to prevent viral diseases. Since the genomic material of 90% higher plant viruses consists of single-stranded RNA, the best way to target the viral genome is to use ribonucleases (RNase), which can be effective against any viral disease of plants. Here, we show the importance of the search for endophytes with protease and RNase activity combined with the capacity to prime antiviral plant defense responses for their protection against viruses. This review discusses the possible mechanisms used to suppress a viral attack as well as the use of local endophytic bacteria for antiviral control in crops.
6

Tapio, Eeva, Katri Bremer und Jari P. T. Valkonen. „Viruses and their significance in agricultural and horticultural crops in Finland“. Agricultural and Food Science 6, Nr. 4 (01.12.1997): 323–36. http://dx.doi.org/10.23986/afsci.72795.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
This paper reviews the plant viruses and virus vectors that have been detected in agricultural and horticultural crop plants and some weeds in Finland. The historical and current importance of virus diseases and the methods used for controlling them in cereals, potato, berry plants, fruit trees, ornamental plants and vegetables are discussed. Plant viruses have been intensely studied in Finland over 40 years. Up to date, 44 plant virus species have been detected, and many tentatively identified viruses are also reported. Control of many virus diseases has been significantly improved. This has been achieved mainly through changes in cropping systems, production of healthy seed potatoes and healthy stocks of berry plants, fruit trees and ornamental plants in the institutes set up for such production, and improved hygiene. At the present, barley yellow dwarf luteovirus, potato Y potyvirus and potato mop-top furovirus are considred to be economically the most harmful plant viruses in Finland.
7

Zettler, F. William. „Viruses of Orchids and Their Control“. Plant Disease 74, Nr. 9 (1990): 621. http://dx.doi.org/10.1094/pd-74-0621.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Bosque-Pérez, N. A., J. M. Thresh, R. A. C. Jones, U. Melcher, A. Fereres, P. L. Kumar, S. M. Gray und H. Lecoq. „Ecology, evolution and control of plant viruses and their vectors“. Virus Research 186 (Juni 2014): 1–2. http://dx.doi.org/10.1016/j.virusres.2014.04.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Roenhorst, J. W., M. Botermans und J. T. J. Verhoeven. „Quality control in bioassays used in screening for plant viruses“. EPPO Bulletin 43, Nr. 2 (16.07.2013): 244–49. http://dx.doi.org/10.1111/epp.12034.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Lee, Ga Hyung, und Choong-Min Ryu. „Spraying of Leaf-Colonizing Bacillus amyloliquefaciens Protects Pepper from Cucumber mosaic virus“. Plant Disease 100, Nr. 10 (Oktober 2016): 2099–105. http://dx.doi.org/10.1094/pdis-03-16-0314-re.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Beneficial plant-associated bacteria protect host plants against pathogens, including viruses. However, leaf-associated (phyllosphere) bacteria have rarely been investigated as potential triggers of plant systemic defense against plant viruses. We found that leaf-colonizing Bacillus amyloliquefaciens strain 5B6 (isolated from a cherry tree leaf) protected Nicotiana benthamiana and pepper plants against Cucumber mosaic virus (CMV). In a field trial, treatment with strain 5B6 significantly reduced the relative contents of CMV coat protein RNA compared with the water control over a 3-year period, as revealed by quantitative reverse-transcription polymerase chain reaction. The expression of Capsicum annuum pathogenesis-related (PR) genes CaPR4, CaPR5, and CaPR10 was upregulated in field-grown pepper plants treated with strain 5B6. In addition, the accumulation of two naturally occurring viruses, Broad bean wilt virus and Pepper mottle virus, was reduced by foliar treatment with strain 5B6, which is similar to the results for benzothiadiazole treatment as a positive control. Taken together, the results suggest that strain 5B6 has strong potential for protecting plants against viruses by increasing defense priming of salicylic acid and jasmonic acid signaling in pepper under field conditions. This is the first report of the protection of a plant against viral diseases by foliar application of leaf-associated bacilli.

Dissertationen zum Thema "Plant viruses Control":

1

Maree, H. J. (Hans Jacob). „The expression of Dianthin 30, a ribosome inactivating protein“. Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/53633.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Thesis (MSc)--Stellenbosch University, 2003.
ENGLISH ABSTRACT: Ribosome inactivating proteins (RIPs) are currently classified as rRNA N-glycosidases, but also have polynucleotide: adenosine glycosidase activity. RIPs are believed to have anti-viral and anti-fungal properties, but the exact mechanism of these proteins still need to be elucidated.The mechanism of resistance however, appears to be independent of the pathogen. For resistance the RIP terminates virus infected plant cells and stops the reproduction and spread of the virus. Transgenic plants containing RIPs should thus be resistant to a wide range of viruses. The ultimate goal of the larger project of which this forms part is the development of virus resistant plants. To monitor the expression of a RIP in a transgenic plant a detection method had to be developed. Antibody detection of the RIP was decided upon as the most cost effective method. The RIP, Dianthin 30 from Dianthus caryophyllus (carnation), was used and expressed in bacterial and insect expression systems. The bacterial expression experiments were done using the pET expression system in BL21(DE3)pLysS cells. The expression in this system yielded recombinant protein at a very low concentration. Expression experiments were also performed in insect tissue culture with the baculovirus vector BAC-TO-BAC™.With this system the expression was also too low to be used for the production of antibodies. A Dianthin 30 specific peptide was then designed and then produced by Bio-Synthesis. This peptide was then used to raise antibodies to detect Dianthin 30. These antibodies were tested on Dianthus caryophyllus proteins. To establish if this detection method was effective to monitor the expression in plants, tobacco plants were transformed with Agrobacterium tumefaciens containing Dianthin 30 in the pART27 plant expression vector. The putative transformed plants were analysed with peR and Southern blots.
AFRIKAANSE OPSOMMING: Tans word Ribosomale-inaktiverende proteïene (RIPs) geklassifiseer as rRNA N-glikosidase wat ook polinukleotied: adenosien glikosidase aktiwiteit bevat. Daar word geglo dat RIPs anti-virale en anti-fungus eienskappe bevat, maar die meganisme van beskerming word nog nie ten volle verstaan nie. Dit is wel bewys dat die meganisme van weerstand onafhanklik is van die patogeen. Virus geinfekteerde plantselle word deur die RIP gedood om die voortplanting en verspreiding te bekamp en sodoende word weerstand bewerkstellig. Transgeniese plante wat dan 'n RIP bevat sal dus weerstandbiedend wees teen 'n wye spektrum virusse. Die hoofdoel van die breër projek, waarvan die projek deel uitmaak: is die ontwikkeling van virusbestande plante. Om die uitdrukking van die RIP in die transgeniese plante te kontroleer, moes 'n deteksie metode ontwikkel word. Die mees koste effektiewe deteksie metode is met teenliggame. Die RIP, Dianthin 30 from Dianthus caryophyllus (angelier) was gebruik vir uitdrukking in bakteriele- en insekweefselkultuur. Die bakteriele uitdrukkingseksperimente was gedoen met die pET uitdrukkings sisteem III BL21(DE3)pLysS selle. Die uitdrukking in die sisteem het slegs rekombinante proteïene gelewer in uiters lae konsentrasies. Uitdrukkingseksperimente was ook gedoen in insekweefselkultuur met die baculovirus vektor BAC-To- BACTM. Met die sisteem was die uitdrukking ook veels te laag om bruikbaar te wees vir die produksie van teenliggame. Daar is toe 'n peptied ontwerp wat Dianthin 30 kan verteenwoordig vir die produksie van teenliggame. Die teenliggame is getoets teen Dianthus caryophyllus proteïene. Om vas te stel of die deteksiemetode wel die uitdrukking van Dianthin 30 sal kan monitor, is tabak ook getransformeer met Dianthin 30. Die transformasies is gedoen met die hulp van Agrobacterium tumefaciens en die pART27 plant uitdrukkings vektor. Die plante is getoets met die polimerase ketting reaksie en Southern klad tegnieke.
2

Giampan, José Segundo. „Infectividade e proteção de três estirpes fracas do Papaya ringspot virus em plantas de melancia“. Universidade de São Paulo, 2003. http://www.teses.usp.br/teses/disponiveis/11/11135/tde-25022003-134805/.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Este trabalho teve como objetivo avaliar a infectividade de estirpes fracas do Papaya ringspot virus - type W (PRSV-W) em plantas de melancia (Citrullus lanatus), em função da origem da estirpe fraca, da concentração e da espécie doadora do inóculo e da idade da planta-teste de melancia, inoculada mecanicamente. Também foi avaliado o efeito protetor dessas estirpes em plantas de melancia em casa de vegetação e em campo. A seleção de estirpes fracas do PRSV-W foi feita a partir de bolhas de folhas de melancia infectadas naturalmente em campo. A infectividade da estirpe fraca selecionada foi comparada com a das estirpes fracas PRSV-W-1 e PRSV-W-2, previamente selecionadas de bolhas de folhas de abobrinha de moita (Cucurbita pepo) 'Caserta' com mosaico. Como controle foi utilizada uma estirpe severa do vírus obtida de abobrinha de moita (PRSV-W-C). A avaliação do efeito da concentração e da espécie da planta fonte do inóculo na infectividade de plantas de melancia foi feita com extratos de 4, 8, 12 e 16 discos de folhas de abobrinha de moita e de melancia, infectadas separadamente com as estirpes fracas e severa, e diluídos em 2 mL de tampão fosfato. O efeito da idade da planta-teste de melancia na infectividade das estirpes fracas foi estudado comparando-se plantas inoculadas em quatro estádios de desenvolvimento, a partir do estádio cotiledonar, com inóculos das diferentes estirpes do PRSV-W extraídos de 12 discos foliares/2 mL de tampão. O efeito protetor da estirpe fraca obtida de bolhas de folhas de melancia com mosaico foi avaliado em plantas premunizadas e desafiadas com a estirpe PRSV-W-C, em casa de vegetação e em campo. Plantas de melancia premunizadas com as estirpes fracas PRSV-W-1 e PRSV-W-2 e plantas não protegidas também foram avaliadas no teste em campo. Foram avaliadas a proteção, com base nos sintomas, a produção e o conteúdo de açúcares (grau brix) dos frutos colhidos das plantas premunizadas e não premunizadas. Uma estirpe fraca do vírus, denominada PRSV-W-3, foi selecionada de bolhas de folhas de melancia com mosaico. Em todos os testes de infectividade em plantas de melancia, independente da concentração e da planta fonte do inóculo e do estádio de desenvolvimento da planta-teste inoculada, a estirpe fraca PRSV-W-3 apresentou taxas de infectividade semelhantes as das estirpes PRSV-W-1 e PRSV-W-2, chegando a 100% em alguns casos. A infectividade da estirpe severa PRSV-W-C foi de 100% em todos os testes. Aparentemente, a infectividade das três estirpes fracas foi mais diretamente afetada pela intensidade de fricção das folhas no momento da inoculação mecânica do que pelas variáveis estudadas. A estirpe fraca PRSV-W-3 protegeu as plantas de melancia contra a infecção e/ou manifestação da estirpe PRSV-W-C em casa de vegetação. Em campo, todas as plantas de melancia premunizadas com as três estirpes fracas também ficaram protegidas contra a estirpe severa utilizada no desafio. A produção das plantas premunizadas não diferiu estatisticamente entre si, nem mesmo daquelas inicialmente sadias infectadas em campo. O conteúdo de açúcares e a aparência da polpa dos frutos também foram semelhantes em todos os tratamentos.
The purpose of this work was to evaluate the infectivity of three mild strains of Papaya ringspot virus - type W (PRSV-W) on watermelon (Citrullus lanatus). The effect of the origin of the mild strain, the concentration of the inoculum, the species of the source of the inoculum and the age of the test-plant on the infectivity of mechanically inoculated watermelon were also evaluated. The protective effect of these mild strains on preimmunized watermelon plants was evaluated under greenhouse and field conditions. Mild strains were selected from blisters formed on mosaic leaves of naturally infected watermelon plants. The infectivity of the selected mild strain was compared with that of mild strains PRSV-W-1 and PRSV-W-2, which were previously obtained from blisters formed on mosaic leaves of zucchini squash (Cucurbita pepo cv. Caserta). A severe strain isolated from zucchini squash (PRSV-W-C) was used as control. The effect of the concentration and the species source of inoculum of the mild strains on the infectivity of watermelon plants was studied with inoculum extracted from 4, 8, 12 and 16 leaf discs of zucchini squash and watermelon plants, separately infected with the mild and severe strains, diluted in 2 mL of phosphate buffer. Four stages of development of watermelon plants, starting at the cotyledonal stage, were tested for the infectivity with the mild strains. Inocula were prepared with extracts of 12 leaf discs diluted in 2 mL of phosphate buffer. The protective effect of the mild strain selected from blisters on mosaic leaves of watermelon plants was evaluated on preimmunized plants challenge inoculated with severe strain PRSV-W-C, under greenhouse and field conditions. Watermelon plants preimmunized with mild strains PRSV-W-1 and PRSV-W-2 and unprotected plants were also included in the field trial. Protection was evaluated based on plant simptons, yield and sugar content in the fruits. One mild strain, named PRSV-W-3, was obtained from blisters on mosaic leaves of watermelon plants. The rate of infection of watermelon plants with mild strain PRSV-W-3 was similar to that with mild strains PRSV-W-1 and PRSV-W-2 in all infectivity tests, independently of the concentration of the inoculum, species source of the inoculum and stage of development of the inoculated test-plant, reaching 100% in some cases. Rate of infectivity with severe strain PRSV-W-C was always 100%. Apparently, the infectivity of the mild strains on watermelon was more directly related with the intensity of the abrasion produced by mechanical inoculation than with the above studied variables. The selected mild strain PRSV-W-3 protected watermelon plants against superinfection with the severe strain in the greenhouse tests. Protection was also effective under field conditions. Yield of plants preimmunized with all three mild strains and unprotected plants were statistically similar. The sugar content and the quality of the pulp of the fruits were similar for all treatments.
3

Mkhize, Thokozani M. „The detection of cherry leaf-roll nepovirus and the use of molecular markers for germplasm identification in walnuts (Juglans regia L.)“. Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/53624.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Thesis (MSc)--Stellenbosch University, 2003.
ENGLISH ABSTRACT: The aim of this study was to combine two common diagnostic tools: serological kits and genetic fingerprinting to identify cherry leaf-roll nepovirus (CLRV), and to establish a marker system to characterize walnut germplasm. The detection of plant viruses is difficult. Restrictions are imposed for quarantine purposes on the importation of plant material from foreign countries. Modern techniques such as a PCR based screening method for CLRV are required to ensure material do not harbour viruses. A primer pair was designed to amplify a 430 bp non-coding homologous region. For the choice of primers, consensus sequences were considered and areas where the sequence data shared 98.5% homology, were chosen. The sensitivity of this detection method was 100-fold higher when compared to the ELISA. The PCR fragment was verified by nucleotide sequencing. AFLP technology was used to identify polymorphic fragments for 6 walnut cultivars and a rootstock, and SCARs were developed from AFLP specific bands. The AFLP technique distinguished all the walnut cultivars and the rootstock. However, conversion of AFLP fragments to SCAR markers for the development of a simple robust technique for cultivar discrimination, was not successful. Using 27 AFLP primer combinations, polymorphic fragments as high as 47.8% were scored. The reason for the lack of efficient conversion was as the result of the AFLP technique. The SCAR primers were generated from sequences internal to the AFLP primers but the specificity of the markers was in the AFLP primers not the internal sequence. In this study using AFLP, walnut cultivars were found to be closely related. The AFLP primer pairs used, provided polymorphic fragments. From these fragments, 7 SCAR markers were developed. It was expected that these SCARs derived from the AFLP markers would detect slight differences between cultivars. The Paradox SCAR marker was the only one that could divide the cultivars into two groups. When Chandler SCAR products were digested with the restriction enzyme Rsal, the same banding pattern as that of Paradox SCAR products was observed.
AFRIKAANSE OPSOMMING: Die doel van hierdie studie was om twee algemene opsporingstegnieke te kombineer: serologiese toetsstelle en genetiese vingerafdrukke om cherry leaf-roll nepovirus (CLRV) te eien en om In merkersisteem te ontwikkel wat okkerneut kiemplasma kan karakteriseer. Die opsporing van plant virusse is baie moeilik. As gevolg van kwarantyn vereistes, word daar beperkinge geplaas word op die invoer van plant materiaal vanuit die buiteland. Moderne tegnieke soos hierdie een wat op PKR berus, word benodig om te verseker dat CLRV nie in plantmateriaal teenwoordig is nie. In Stel inleiers is ontwerp wat In 430 bp nie-koderende homoloë area amplifiseer. Hiervoor is konsensus volgordes bestudeer en slegs die volgordes wat 98,5% homologie getoon het, is gekies. In vergelyking met ELISA was die sensitiwiteit van hierdie deteksie metode 100 maal beter. DNA volgordebepaling is op die resulterende fragment gedoen om die PKR produk te verifieer. AFLP tegnologie is gebruik om polimorfiese fraqmente vir 6 okkerneut kultivars en 'n onderstok te identifiseer en SCARs is uit hierdie fragmente ontwikkel. Die AFLP tegniek kon tussen al die okkerneut kultivars en die onderstok onderskei. Die omskakeling van die AFLP fragmente in SCAR merkers om sodoende In eenvoudige kragtige tegniek vir kultivar onderskeiding te ontwikkel, was egter nie suksesvol nie. Met die gebruik van 27 AFLP inleier kombinasies, kon polimorfiese fragmente van so hoog as 47.8% verkry word. Die rede hoekom omskakeling onsuksesvol was lê by die aard van die AFLP tegniek. Die SCAR inleiers is ontwikkel uit volyordes intern tot die AFLP inleiers, maar die spesifisiteit van die merkers het juis in die AFLP inleiers gelê en nie in die interne volgordes nie. In hierdie studie, met die gebruik van AFLP, is gevind dat okkerneut kultivars baie naby verwant is. Die AFLP inleierstelle wat gebruik is, het polimorfiese fragmente gelewer. Uit hierdie fragmente is 7 SCAR merkers ontwikkel. Daar is verwag dat die SCARs wat uit die AFLP merkers ontwikkel is, klein verskille tussen kultivars sou opspoor. Dit was egter net die Paradox SCAR merker wat die kultivars in twee groepe kon verdeel. Restriksie ensiem vertering met Rsalop die Chandler SCAR produkte het dieselfde bandpatrone as die van die Paradox SCAR produkte gelewer.
4

Li, Sizhun. „SnRK1-eIF4E Interaction in Translational Control and Antiviral Defense“. The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1417694518.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Beltrame, André Boldrin. „Efeito de cianobactérias e algas eucarióticas na resistência de plantas de fumo contra o Tobacco mosaic virus (TMV)“. Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/11/11135/tde-02032006-155032/.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
As algas produzem uma grande diversidade de compostos com atividade biológica, inclusive que agem diretamente sobre vírus ou como indutores de fitoalexinas. Em vista disso, foi investigada a redução de sintomas causados por Tobacco mosaic vírus (TMV) em plantas de fumo tratadas com cianobactérias ou algas eucarióticas, além de se tentar elucidar o modo de ação das algas no patossistema estudado. Quando as plantas de fumo foram tratadas dois dias antes da inoculação, foi verificado que suspensões dos isolados 004/02, 008/02, 061/02, Anabaena sp. e Nostoc sp. 61, bem como as preparações do conteúdo intracelular do isolado 004/02 (4 C) e do filtrado do meio de cultivo do isolado 061/02 (61 M) apresentaram efeito na redução dos sintomas de TMV em plantas de fumo, cultivar TNN. Além disso, foi estudado o efeito direto das algas sobre as partículas de vírus. Os resultados mostraram que os isolados Anabaena sp., Nostoc sp. 21, Nostoc sp. 61 e 090/02 apresentam compostos que agem diretamente sobre o TMV. Para tentar elucidar o mecanismo de ação das algas no patossistema estudado, diversos parâmetros bioquímicos foram investigados. Foi detectado que a preparação 4 C aumentou a atividade de peroxidases e que todos os tratamentos analizados reduziram a atividade de β-1,3-glucanase em folhas de fumo a partir do quarto dia após o tratamento das plantas. Por sua vez, as suspensões dos isolados 008/02 e 061/02 e a preparação 61 M proporcionaram maior acúmulo de superóxido, enquanto que a preparação 4 C reduziu o acúmulo de peróxido de hidrogênio, em relação aos controles água destilada e meio de cultura BG 11, 37 horas após a inoculação do vírus. Em vista disso, as algas podem ser utilizadas como agentes de controle biológico, por apresentar ação direta sobre fitopatógenos ou alterarem o metabolismo de plantas, o que pode estar associado com a sintese de compostos de defesa.
Algae produce several different compounds that show biological activity, including ones with antiviral activity or that act as phytoalexin inducers. Thus, it was investigated the reduction of Tobacco mosaic virus (TMV) symptoms on tobacco plants treated with cyanobacteria or eukaryotic algae, and it was studied the way of action of algae on the studied pathosystem. When the tobacco plants were treated two days before the inoculation, it was verified that the suspension of 004/02, 008/02, 061/02 Anabaena sp., and Nostoc sp. 61 strains as well as the intracellular preparation of 004/02 strain (4 C) and the medium filtrated from 061/02 strain (61 M) reduced TMV symptoms on tobacco plants, cultivar TNN. Furthermore, it was studied the direct effect of the algae suspensions on virus particles. The results showed that Anabaena sp., Nostoc sp. 21, Nostoc sp. 61 and 090/02 strains have compounds with direct activity on TMV. To try to elucidate the way of the action of algae, on the studied pathosystem, several biochemical parameters were investigated. It was seen that the preparation 4 C increase peroxidase activity and all treatments decrease β-1,3-glucanase activity on tobacco leaves from the forth day on after the treatment. Moreover, 008/02 and 061/02 strains and the 61 M preparation caused higher superoxide accumulation, and the preparation 4 C decreased hydrogen peroxide accumulation when compared to the controls distilled water and BG 11 medium 37 hour after virus inoculation. In this way, the algae could be a biocontrol agents, because it shows direct action on phytopathogens and/or change the metabolism of the plants, that could be associated with the synthesis of deffence compounds.
6

Du, Preez Jacques. „The construction of an infectious clone of grapevine virus A (GV A)“. Thesis, Link to the online version, 2005. http://hdl.handle.net/10019/1012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Novaes, Quelmo Silva de. „Seleção de estirpes fracas do Passion Fruit Woodiness Virus e tentativas de premunização para o controle do endurecimento dos frutos do maracujazeiro“. Universidade de São Paulo, 2002. http://www.teses.usp.br/teses/disponiveis/11/11135/tde-03122002-080324/.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Este trabalho teve por objetivo selecionar estirpes fracas do Passion fruit woodiness virus (PWV) e avaliar o seu efeito protetor para o controle do endurecimento dos frutos do maracujazeiro. Foram selecionadas seis estirpes fracas do PWV. Três a partir de plantas de elite, encontradas em pomares severamente afetados pelo vírus (F-101, F-102 e F-103) e três a partir de bolhas formadas em folhas de maracujazeiro com mosaico (F-99, F-144 e F-145). O efeito protetor das estirpes fracas foi avaliado em maracujazeiros, em casa de vegetação e em campo. Em casa de vegetação foi observada uma proteção parcial das estirpes F-101, F-102 e F-144, contra a estirpe severa PWV-SP. Em campo, num primeiro experimento, as seis estirpes fracas selecionadas foram avaliadas e aproximadamente 4 meses após o desafio com a estirpe PWV-SP, todas as plantas apresentaram sintomas severos da doença. Diante da proteção parcial em casa de vegetação e da ausência total de proteção no experimento de campo, duas hipóteses foram apresentadas para explicar a intensificação de sintomas em maracujazeiros premunizados e desafiados com a estirpe severa do virus: a) a ocorrência de baixa concentração e/ou distribuição irregular das estirpes fracas nos tecidos das plantas premunizadas permite a infecção e estabelecimento da estirpe severa posteriormente inoculada e b) as estirpes fracas selecionadas são de uma espécie diferente de Potyvirus, serologicamente relacionada com o PWV, mas que não oferecem proteção contra a estirpe severa deste último. A primeira hipótese foi estudada repetindo-se o experimento com maracujazeiros premunizados com as estirpes F-101 e F-144, separadamente, e cultivados em campo sob condições de telado. Antes do desafio, foram feitos estudos quantitativos das estirpes F-101 e F-144, em diferentes folhas das plantas, através do DAS-ELISA indireto. Foi observada uma grande variação na concentração das estirpes fracas nos tecidos de diferentes folhas da mesma planta. Em 68,3 %, de 300 discos foliares, as estirpes fracas não foram detectadas pelos critérios adotados nessa investigação. Mais uma vez todas as plantas premunizadas e desafiadas apresentaram sintomas severos da doença, quatro meses após o desafio. A segunda hipótese foi estudada através de testes de proteção em plantas de crotalária premunizadas com as estirpes F-101 e F-144 e da análise da seqüência de nucleotídeos do gene da capa protéica das estirpes F-101, F-103 e PWV-SP. Nos testes de proteção, todas as plantas premunizadas com as estirpes fracas ficaram protegidas contra a infecção e/ou manifestação dos sintomas causados pela estirpe severa PWV-SP. Estudos quantitativos das estirpes fracas nessa hospedeira revelaram uma maior uniformidade na concentração do vírus nos tecidos foliares. A análise da seqüência de nucleotídeos do gene que codifica a capa protéica, apontaram identidade de 99,7 % entre as estirpes fracas e de 97,5 % destas com a estirpe severa, mostrando tratarem-se de estirpes do mesmo vírus. Esses resultados mostram que a premunização não parece ser uma alternativa adequada para o controle do endurecimento dos frutos do maracujazeiro, devido à falha na proteção. Essa quebra de proteção parece estar relacionada com a baixa concentração e/ou distribuição irregular das estirpes fracas nas folhas do maracujazeiro, que propiciam a existência de sítios de infecção para a estirpe severa posteriormente inoculada.
The main purpose of this work was to select mild strains of Passion fruit woodiness virus (PWV) and to evaluate their protective effect in passion flower (Passiflora edulis f. flavicarpa Deg.) challenged with a severe strain of the virus. Three mild strains were selected from outstanding plants found in orchards severely affected by the virus (F-101, F-102 and F-103) and three others were obtained from blisters formed in passion flower leaves with mosaic (F-99, F-144 and F-145). The protective effect of the mild strains was evaluated in passion flower under greenhouse and field conditions. Plants preimmunized with mild strains F-101, F-102 and F-144, under greenhouse conditions, showed partial protection after challenge inoculation with the severe strain PWV-SP. Total absence of protection was observed in passion flower preimmunized with all six mild strains and challenged with PWV-SP in the first field experiment. Due to these results, two hypotheses were raised to explain the intensification of symptoms in passion flower preimmunized with mild strains and challenged with the severe strain of the virus: a) the occurrence of low concentration and/or irregular distribution of the mild strains in the tissues of the preimmunized plants allow the infection and establishment of the later inoculated severe strain and b) the selected mild strains belong to a different species of Potyvirus, serologically related to PWV, but that do not offer protection against the severe strain of PWV. The first hypothesis was studied in a field experiment with passion flower preimmunized with mild strains F-101 and F-144, separately, and cultivated under screenhouse. Before the challenge inoculation, leaf samples were taken from five leaves of all protected plants and the concentration of the mild strains was estimated by indirect DAS-ELISA. A group of plants was challenged in three expanded leaves of the vine and another group was challenged with viruliferous aphids placed on the tip of the vine. All preimmunized plants showed severe symptoms of the disease, four months after the challenge inoculation. A great variation was observed in the concentration of the mild strains in the tissues of different leaves of the same plant. The ELISA test was not able to detect the mild strains in extracts of 205 out of 300 leaf disks. The second hypothesis was tested with crotalaria plants (Crotalaria juncea L.) preimmunized with mild strains F-101 and F-144 and analysis of the nucleotide sequence of the coat protein gene of the F-101, F-103 and PWV-SP strains. All preimmunized crotalaria plants were protected against the infection and/or manifestation of the symptoms caused by the severe strain PWV-SP. Quantitative studies of the mild strains in crotalaria revealed a larger uniformity in the concentration of the virus in the leaves. The analysis of the nucleotide sequence of the coat protein gene pointed out identity of 99.7% among the mild strains. The severe strain shared 97.5 % identity with both mild strains, showing that they are all strains of the same virus. These results showed that preimmunization does not seem to be an appropriate alternative for the control of the passion fruit woodiness disease in passion flower due to the breakdown in protection. Failure in protection seems to be related to the low concentration and/or irregular distribution of the mild strains in the leaves of the passion flower, which allow the occurrence of infection sites available for superinfection with the severe strain.
8

Gouvêa, Marina Mengardo. „Efeito de inseticidas no controle das transmissões primária e secundária do Tomato severe rugose virus (ToSRV) para tomateiro por Bemisia tabaci biótipo B“. Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/11/11135/tde-20102015-152947/.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
O mosaico rugoso, causado pelo begomovirus ToSRV, é uma das principais doenças do tomateiro. Neste trabalho avaliou-se a eficácia de quatro inseticidas, ciantranilliprole foliar, ciantraniliprole solo, espiromesifeno e tiametoxam no controle das infecções primária e secundária do ToSRV, em tomateiros, transmitido por Bemisia tabaci biótipo B. Os tratamentos, confinados separadamente em gaiolas a prova de insetos, foram: controle, representado por tomateiros sadios e infectados, pulverizados com água, mais insetos avirulíferos; infecção primária, simulada com tomateiros sadios pulverizados com inseticida, mais insetos virulíferos e infecção secundária, simulada com tomateiros sadios e infectados com o ToSRV, pulverizados com inseticida, mais insetos avirulíferos. Nenhum inseticida foi eficiente no controle da infecção primária. No caso da simulação da infecção secundária, 4% e 16% respectivamente, dos tomateiros tratados com os inseticidas ciantraniliprole solo e ciantraniliprole foliar foram infectados, contra 84% e 74% de tomateiros infectados nos respectivos controles. Para os tratamentos com os inseticidas tiametoxam e espiromesifeno, na simulação da infecção secundária, 58% e 62% dos tomateiros foram infectados, respectivamente, contra 66% e 74% de plantas infectadas nos respectivos controles. O uso racional de inseticidas que reduzem a infecção secundária associado com a eliminação de fontes externas de inóculo poderá contribuir para o manejo da doença.
The severe mosaic, caused by ToSRV begomovirus, is a major disease of tomato. This study evaluated the efficacy of four insecticides, sprayed cyazypyr, drench cyazypyr, sprayed spiromesifen and thiamethoxam on controlling primary and secondary infections by ToSRV to tomato plants, transmitted by Bemisia tabaci biotype B. Treatments were confined separately in proof insects cages, which were: control, represented by healthy and infected tomato plants sprayed with water and aviruliferous insects releasing; primary infection, simulated by healthy tomato plants with insecticide spraying and viruliferous insects releasing, and secondary infection, simulated with healthy tomato plants and ToSRV infected tomato plants, sprayed with insecticide, and aviruliferous insects releasing. None of the insecticides was effective in controlling primary infection. In the case of secondary infection simulation, 4% and 16% of the tomato plants treated with soil and foliar cyazypyr insecticides, respectively, were infected; against 84% and 74% of infected tomato plants in their respective controls. For treatments with thiamethoxam and spiromesifen insecticides spraying, in secondary infection simulation, 58% and 62% of tomato plants were infected, respectively, versus 66% and 74% of infected plants in their respective controls. The rational use of insecticides to reduce secondary infection associated with elimination of external sources of inoculum may contribute to disease management.
9

Willekens, Jeroen. „Mechanism of vector resistance in groundnut to control groundnut rosette virus disease in Sub-Saharan Africa“. Thesis, University of Greenwich, 2003. http://gala.gre.ac.uk/6344/.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Analysis of biological performance parameters of Aphis craccivora on groundnut variety ICG12991 in laboratory and field trials demonstrated that ICG12991 was resistant to the aphid vector of groundnut rosette diseases and that this resistance was stable over time and under high aphid pressure. Feeding experiments related slow population development and high aphid mortality on ICG 12991 to an inhibition of phloem feeding from the sieve elements. Consequently, virus transmission of all three agents of rosette disease was almost totally absent even under very high pressure of viruliferous aphids. Further investigation of the underlying mechanism of resistance in ICG 12991 showed that the resistance was induced by aphid probes rather than constitutive. The induced plant response was described as a hypersensitive response around the aphid feeding sites. Aphid-resistance and hypersensitivity were identified in at least 7 groundnut varieties and it is proposed that more varieties are likely to express these characteristics. The results led to the recommendation to evaluate groundnut varieties for aphid resistance by evaluating aphid population development. The identification of vector resistance and its efficacy in reducing virus spread of rosette disease in the field has opened the way for novel approaches for groundnut disease management.
10

Marques, Míriam de Almeida. „Óleos vegetais e óleo mineral na mortalidade da Bemisia tabaci biótipo B e na transmissão do vírus do mosaico dourado no feijoeiro“. Universidade Federal de Goiás, 2011. http://repositorio.bc.ufg.br/tede/handle/tede/3577.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Submitted by Erika Demachki (erikademachki@gmail.com) on 2014-11-07T17:02:36Z No. of bitstreams: 2 Dissertação - Míriam de Almeida Marques - 2011.pdf: 1500273 bytes, checksum: d34aa41a75621b87445ae291524bb2e7 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Approved for entry into archive by Erika Demachki (erikademachki@gmail.com) on 2014-11-07T17:02:51Z (GMT) No. of bitstreams: 2 Dissertação - Míriam de Almeida Marques - 2011.pdf: 1500273 bytes, checksum: d34aa41a75621b87445ae291524bb2e7 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Made available in DSpace on 2014-11-07T17:02:51Z (GMT). No. of bitstreams: 2 Dissertação - Míriam de Almeida Marques - 2011.pdf: 1500273 bytes, checksum: d34aa41a75621b87445ae291524bb2e7 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2011-08-01
As an alternative to synthetic insecticides, mineral oils and vegetable oils have been shown to be promising in controlling Bemisia tabaci biotype B. This study aimed to evaluate the effect of mineral and vegetable oils on eggs, nymphs and adults of B. tabaci biotype B, in the transmission of the bean golden mosaic virus and on dry production. The experiments were conducted at screenhouse at Embrapa Rice and Beans, Santo Antônio de Goiás, Goiás. The following oils in the concentration of 1% were used: Assist® mineral oil, Neem Max® neem oil, Veget'oil® vegetable oil, Citrole® orange oil, Castor Oil®, Sesame Oil®. The two last oils were emulsified with detergent Zupp® at 2%. Thiamethoxam at 200 g pc/ha (GD - dispersible granule) was used as a standard for comparison of chemical insecticide and distilled water as control. In all experiments, the experimental unit consisted of a polyethylene pot (34 cm diameter x 12 cm) containing two seedlings of common bean cv. Pearl. The experimental design was completely randomized with four replications / treatment. In the first experiment was evaluated the effect of oils on the mortality of eggs of B. tabaci. The second experiment was conducted to verify that the treatment of eggs with the oils would affect first instar nymphs. In the third experiment was evaluated the mortality of nymphs of the second to fourth instar after spraying of oil on the second instar nymphs. In these experiments, seedlings of bean cv. Pearl infested with eggs or nymphs of the whitefly were sprayed with 250 μL of each treatment on the abaxial surface of leaves. In the fourth experiment, four seedlings infested with adults and distributed in one m2 were sprayed with 30 ml of treatment. In the fifth experiment the effect of oils on adult mortality, the incidence of bean golden mosaic virus and crop production were evaluated by spraying only vegetable oils before the infestation of the seedlings with adults. All treatments caused mortality of eggs lesser or equal to 9.5%. Vegetable oils, when applied to eggs, caused mortality of newly-hatched nymphs lesser or equal to 22.3%. All treatments caused significant mortality of second instar nymphs, ranging from 46.5% for thiamethoxan to 81.6% for to castor oil. The treatments also affected the development of the nymphs until the fourth instar. Mortalities of nymphs greater than 80% were observed with castor, neem, sesame and orange oils. Only castor, sesame and mineral oils caused significant adult mortalities of 41.2%, 25.7% and 38.0%, respectively, one day after spraying. The orange, castor, neem and sesame oils, when sprayed prior to insect infestation of beans seedlings, caused mortality of whitefly adults ranging from 32.1% to 53.6%, one day after application. The castor and orange oils reduced the incidence of golden mosaic virus in bean. Castor oil favored greater pod yield, while the lowest pod yield was observed on sesame oil. The total number of seeds, mean number of seeds per pod and seed weight was not increased with the use of vegetable oils. The use vegetable and mineral oils have the potential to control B. tabaci biotype B.
Como alternativa aos inseticidas sintéticos, óleos vegetais e óleos minerais têm se revelado promissores no controle da Bemisia tabaci biótipo B. Esse trabalho teve como objetivo avaliar o efeito de óleos vegetais e mineral sobre ovos, ninfas e adultos da B. tabaci biótipo B e sobre a transmissão do vírus do mosaico dourado no feijoeiro e na sua produtividade. Os experimentos foram conduzidos em casa telada na Embrapa Arroz e Feijão, Santo Antônio de Goiás, Goiás. Utilizaram-se os seguintes óleos na concentração de 1%: óleo mineral Assist®, óleo de nim Max Neem®, óleo vegetal Veget’oil®, óleo de laranja Citrole®, óleo de Mamona®, óleo de Gergelim®, sendo os dois últimos emulsificados com detergente neutro Zupp® a 2%. Como padrão de comparação de inseticida químico utilizou-se o thiamethoxam a 200 g p.c./ha (granulado dispersível-GD) e como testemunha água destilada. Em todos os experimentos, a unidade experimental foi constituída por um vaso de polietileno (34 cm de diâmetro x 12 cm de altura) contendo duas plântulas do feijoeiro comum cv. Pérola. O delineamento experimental utilizado foi o inteiramente casualizado com quatro repetições/tratamento. No primeiro experimento foi avaliado o efeito dos óleos sobre a mortalidade dos ovos da B. tabaci. O segundo experimento foi instalado para verificar se o tratamento de ovos com os óleos afetaria as ninfas de primeiro ínstar da mosca-branca. No terceiro experimento foi avaliada a mortalidade de ninfas do segundo ao quarto ínstar após a pulverização dos óleos sobre ninfas do segundo ínstar. Nestes experimentos, plântulas de feijão cv. Pérola infestadas com ovos ou ninfas da mosca-branca foram pulverizadas com 250 μL de cada tratamento na face abaxial das folhas. No quarto experimento, quatro plântulas infestadas com adultos e distribuídas em um m2 foram pulverizadas com 30 ml dos tratamentos. No quinto experimento avaliou-se o efeito dos óleos na mortalidade dos adultos, na incidência do vírus do mosaico dourado do feijoeiro e na produtividade dessa cultura, pulverizando-se apenas os óleos vegetais antes da infestação dos adultos nas plântulas. Todos os tratamentos causaram mortalidade de ovos menor ou igual a 9,5%. Os óleos vegetais quando aplicados sobre os ovos, apresentaram efeito residual, causando mortalidade de ninfas recém-eclodidas menor ou igual a 22,3%. Todos os tratamentos causaram mortalidades significativas de ninfas do segundo ínstar, variando de 46,5% para o thiamethoxan até 81,6% para o óleo de mamona. Os tratamentos também afetaram o desenvolvimento das ninfas até o quarto ínstar. Foram observadas mortalidades de ninfas maiores que 80% com o óleo de mamona, nim, gergelim e laranja. Somente os óleos de mamona, gergelim e mineral causaram mortalidades significativas de adultos de 41,2%, 25,7% e 38%, respectivamente, um dia após a pulverização. Os óleos vegetais de laranja, mamona, nim e gergelim, quando pulverizados antes da infestação do inseto em plântulas de feijão, causaram mortalidade de adultos da mosca-branca variando de 32,1% a 53,6%, um dia após aplicação. Os óleos de mamona e laranja reduziram a incidência do vírus do mosaico dourado no feijoeiro. O óleo de mamona favoreceu maior produção de vagens, enquanto que o gergelim proporcionou menores valores de produção. O número total de grãos, número de grãos por vagem e massa de grãos, não foi incrementado com o uso de óleos vegetais. O uso de óleos vegetal e mineral apresenta potencial no controle da B. tabaci biótipo B.

Bücher zum Thema "Plant viruses Control":

1

Matthews, R. E. F. Matthews' plant virology. 4. Aufl. San Diego: Academic Press, 2002.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Matthews, R. E. F. Plant virology. San Diego: Academic Press, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Matthews, R. E. F. Plant virology. 3. Aufl. San Diego: Academic Press, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Taylor, C. E. Nematode vectors of plant viruses. New York: CAB International, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Wisler, Gail C. How to control orchid viruses: The complete guidebook. Gainsville, FL: Maupin House, 1989.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

International Workshop on "The Implementation of Integrated Control of Virus Diseases of Important Crops" (1990 Taiwan Agricultural Research Institute). Integrated control of plant virus diseases: Proceedings of the International Workshop on "The Implementation of Integrated Control of Virus Diseases of Important Crops". Herausgegeben von Kiritani Keizi, Su Hong-Ji, Chu Yau-I, Tʻai-wan sheng nung yeh shih yen so. und Asian Pacific Council. Food & Fertilizer Technology Center. Taipei: Food and Fertilizer Technology Center for the Asian and Pacific Region, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Basu, A. N. Bemisia tabaci (Gennadius): Crop pest and principal whitefly vector of plant viruses. Boulder: Westview Press, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Green, S. K. Characteristics and control of viruses infecting peppers: A literature review. Taipei: Asian Vegetable Research and Development Center, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Song, Bao'an. Environment-friendly antiviral agents for plants. Dordrecht: Springer, 2010.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Anjaneyulu, A. Rice tungro. Lebanon, N.H: Science Pub., 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Plant viruses Control":

1

Falk, Bryce W., und James E. Duffus. „Ecology and Control“. In The Plant Viruses, 275–96. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-7038-3_9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Harrison, B. D., und A. F. Murant. „Nepoviruses: Ecology and Control“. In The Plant Viruses, 211–28. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4899-1772-0_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Garrett, R. G., J. A. Cooper und P. R. Smith. „Virus Epidemiology and Control“. In The Plant Viruses, 269–97. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-4937-2_9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Gergerich, R. C., und H. A. Scott. „Comoviruses: Transmission, Epidemiology, and Control“. In The Plant Viruses, 77–98. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4899-1772-0_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Gooding, G. V. „Tobacco Mosaic Virus Epidemiology and Control“. In The Plant Viruses, 133–52. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-7026-0_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Hamilton, R. I., und J. H. Tremaine. „Dianthoviruses: Properties, Molecular Biology, Ecology, and Control“. In The Plant Viruses, 251–82. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4899-1772-0_10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Hagedorn, D. J. „Pea Enation Mosaic Enamovirus: Ecology and Control“. In The Plant Viruses, 345–56. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4899-1772-0_13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Morgan, Lynette. „Plant health, plant protection and abiotic factors.“ In Hydroponics and protected cultivation: a practical guide, 170–95. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789244830.0170.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract This chapter describes (i) major greenhouse pests (including insects, mites and nematodes) and pest control options focusing on integrated pest management (which involves the use of 'ofter' control options such as biological and microbial control combined with physical exclusion, pest trapping, resistant crops and other methods); (ii) selected diseases of hydroponic crops, including those caused by fungi, bacteria and viruses; and (iii) physiological disorders caused by non-living or non-infectious factors such as temperature, light, irrigation water quality and salinity, chemical injury (phytotoxicity), and cultural practices.
9

Morgan, Lynette. „Plant health, plant protection and abiotic factors.“ In Hydroponics and protected cultivation: a practical guide, 170–95. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789244830.0010.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract This chapter describes (i) major greenhouse pests (including insects, mites and nematodes) and pest control options focusing on integrated pest management (which involves the use of 'ofter' control options such as biological and microbial control combined with physical exclusion, pest trapping, resistant crops and other methods); (ii) selected diseases of hydroponic crops, including those caused by fungi, bacteria and viruses; and (iii) physiological disorders caused by non-living or non-infectious factors such as temperature, light, irrigation water quality and salinity, chemical injury (phytotoxicity), and cultural practices.
10

Fraser, R. S. S. „Host-Range Control and Non-Host Immunity to Viruses“. In Mechanisms of Resistance to Plant Diseases, 13–28. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5145-7_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Plant viruses Control":

1

Bagrov, R. A., und V. I. Leunov. „Green peach aphid and potato leafroll virus: transmission and control“. In Растениеводство и луговодство. Тимирязевская сельскохозяйственная академия, 2020. http://dx.doi.org/10.26897/978-5-9675-1762-4-2020-178.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The mechanisms of transmission of potato viruses from plants to aphid vectors and from aphids to uninfected plants are described, including the example of the green peach aphid (Myzus persicae, GPA). Factors affecting the spreading of tuber necrosis and its manifestation on plants infected with potato leafroll virus (PLRV) are discussed. Recommendations for PLRV and GPA control in the field are given.
2

Mărîi, Liliana, Larisa Andronic, Svetlana Smerea und Irina Erhan. „Dinamica răspunsului antioxidativ la tomatele cu diferit tip de interacțiune cu agentul viral“. In International Scientific Symposium "Plant Protection – Achievements and Prospects". Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2020. http://dx.doi.org/10.53040/9789975347204.70.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The defensive response of 4 tomato genotypes to Tobacco Mosaic Virus or Tomato Aspermy Virus was evaluated according to 3 indices - peroxidase and catalase activities and hydrogen peroxide content. The response was differentiated according to the applied viral infection, the genotype and dynamics of the infection process. Particularities have been attested in the reaction of the antioxidative response at different stages of the pathogenesis - increasing or decreasing of the evaluated indices compared to the healthy control.
3

Andronic, Larisa. „Impactul destabilizator al infecțiilor virale asupra microsporogenezei la plantele gazdă“. In International Scientific Symposium "Plant Protection – Achievements and Prospects". Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2020. http://dx.doi.org/10.53040/9789975347204.61.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The pathogenicity reactions described in the sensitive genotypes of tomatoes and barley include specifically changes in the processes of meiotic division, with repercussions in the offspring of infected plants. The percentage of aberrant pollen mother cells (PMCs) in the offspring is at the level of control plants, while the percentage of aberrations per PMC and the frequency of meiotic conjugation are significantly higher. The consequences in meiotic division in virus free progenies reflect the destabilizing transgenerational effect of viral infection on microsporogenesis processes.
4

Kolychikhina, M. S. „Positive effect of preparations with antiviral properties on potato productivity“. In Растениеводство и луговодство. Тимирязевская сельскохозяйственная академия, 2020. http://dx.doi.org/10.26897/978-5-9675-1762-4-2020-111.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
In the small-plot experiment of the Russian State Agrarian University - Moscow Timiryazev Agricultural Academy against potato viruses in 2014-2019 were tested some kinds of preparations with antiviral activity: Pharmayod, GS (100 g/l of iodine); Immunocytophyte, TAB (20 g/kg arachidonic acid ethyl ester); Ecogel, WS (30 g/l of chitosan lactate); Amulet, TAB (composition of linear polyaminosaccharides (chitosan) in succinic acid solution); Zerox, WS (3000 mg /l colloidal silver); Viron, WS (biostimulant based on urea and citric acid with the addition of essential oils). According to the results of the studies, it was found that, in addition to the effect on the causative agents of viral diseases of potatoes, all tested preparations had a stable tendency to maintain or increase the yield of tubers of infected plants. The increase in the yield of tubers ranged from 0.5 to 1.3 kg/m2. In 2016 under the production conditions of Astrakhan region on the potato variety Impala infected with the PVM + PVS and PVM + PVS + PVY virus complexes a comparative assessment of the effect of Pharmayod and Immunocytophyte revealed a significant increase in the gross and marketable yield of potato plants in the areas with the use of these preparations compared to with control.
5

Michtchenko, A., A. V. Budagovsky und O. N. Budagovskaya. „Optical Diagnostics Fungal and Virus Diseases of Plants“. In 2015 12th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE). IEEE, 2015. http://dx.doi.org/10.1109/iceee.2015.7357968.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Plant viruses Control":

1

Anderson, Lowell A., Neal Black, Thomas J. Hagerty, John P. Kluge und Paul L. Sundberg. Pseudorabies (Aujeszky’s Disease) and Its Eradication: A Review of the U.S. Experience. U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Oktober 2008. http://dx.doi.org/10.32747/2008.7207242.aphis.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
This report has been written to serve as a history of the U.S. Aujeszky’s Disease (Pseudorabies) Eradication Program and as a guide when future disease eradication programs are considered. The report provides an overview of the program and its history and is generally nontechnical, with specific sections written by subject matter experts. The information was compiled during 2007, three years after the last four States qualified for Stage V (Free) Status. This eradication effort was formally initiated in 1989. The contents of this report include a variety of information that represents the viewpoints of individuals participating in the eradication effort. To introduce the challenge of pseudorabies (PRV), the report covers characteristics of the virus and the history of the disease in the United States, followed by the emergence of virulent strains in the 1970s that coincided with management changes in the swine industry. The report also discusses early attempts at PRV control, vaccines, and diagnostic tools, and then reviews various pilot projects, individual State experiences, and national debate on the pros and cons of eradication versus control. In addition, the report offers details on the evolution and acceptance of a national eradication program, including debate among industry and State/Federal officials, funding, testing protocols, cleanup plans, and the development of gene-deleted vaccines and their complementary tests. The ongoing threat of reintroduction from feral swine and emergency response plans are also included. Lastly, the technical coordinators have included a chapter on lessons learned from our various viewpoints on the eradication effort.

Zur Bibliographie