Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Plant root pathogens“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Plant root pathogens" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Plant root pathogens"
Thomashow, Linda S. „Biological control of plant root pathogens“. Current Opinion in Biotechnology 7, Nr. 3 (Juni 1996): 343–47. http://dx.doi.org/10.1016/s0958-1669(96)80042-5.
Der volle Inhalt der QuelleJousset, Alexandre, Laurène Rochat, Arnaud Lanoue, Michael Bonkowski, Christoph Keel und Stefan Scheu. „Plants Respond to Pathogen Infection by Enhancing the Antifungal Gene Expression of Root-Associated Bacteria“. Molecular Plant-Microbe Interactions® 24, Nr. 3 (März 2011): 352–58. http://dx.doi.org/10.1094/mpmi-09-10-0208.
Der volle Inhalt der QuelleDelavaux, Camille S., Josh L. Schemanski, Geoffrey L. House, Alice G. Tipton, Benjamin Sikes und James D. Bever. „Root pathogen diversity and composition varies with climate in undisturbed grasslands, but less so in anthropogenically disturbed grasslands“. ISME Journal 15, Nr. 1 (21.09.2020): 304–17. http://dx.doi.org/10.1038/s41396-020-00783-z.
Der volle Inhalt der QuelleStephens, Cameron M., Travis W. Gannon, Marc A. Cubeta, Tim L. Sit und James P. Kerns. „Characterization and Aggressiveness of Take-All Root Rot Pathogens Isolated from Symptomatic Bermudagrass Putting Greens“. Phytopathology® 112, Nr. 4 (April 2022): 811–19. http://dx.doi.org/10.1094/phyto-05-21-0215-r.
Der volle Inhalt der QuelleDawadi, Sujan, Fulya Baysal-Gurel, Karla M. Addesso, Prabha Liyanapathiranage und Terri Simmons. „Fire Ant Venom Alkaloids: Possible Control Measure for Soilborne and Foliar Plant Pathogens“. Pathogens 10, Nr. 6 (27.05.2021): 659. http://dx.doi.org/10.3390/pathogens10060659.
Der volle Inhalt der QuelleBiernacki, M., und B. D. Bruton. „Quantitative Response of Cucumis melo Inoculated with Root Rot Pathogens“. Plant Disease 85, Nr. 1 (Januar 2001): 65–70. http://dx.doi.org/10.1094/pdis.2001.85.1.65.
Der volle Inhalt der QuelleLee, Jang Hoon, Anne J. Anderson und Young Cheol Kim. „Root-Associated Bacteria Are Biocontrol Agents for Multiple Plant Pests“. Microorganisms 10, Nr. 5 (19.05.2022): 1053. http://dx.doi.org/10.3390/microorganisms10051053.
Der volle Inhalt der QuelleHanson, L. E. „Interaction of Rhizoctonia solani and Rhizopus stolonifer Causing Root Rot of Sugar Beet“. Plant Disease 94, Nr. 5 (Mai 2010): 504–9. http://dx.doi.org/10.1094/pdis-94-5-0504.
Der volle Inhalt der Quellevan West, P., B. M. Morris, B. Reid, A. A. Appiah, M. C. Osborne, T. A. Campbell, S. J. Shepherd und N. A. R. Gow. „Oomycete Plant Pathogens Use Electric Fields to Target Roots“. Molecular Plant-Microbe Interactions® 15, Nr. 8 (August 2002): 790–98. http://dx.doi.org/10.1094/mpmi.2002.15.8.790.
Der volle Inhalt der QuelleTraquair, James A. „Fungal biocontrol of root diseases: endomycorrhizal suppression of cylindrocarpon root rot“. Canadian Journal of Botany 73, S1 (31.12.1995): 89–95. http://dx.doi.org/10.1139/b95-230.
Der volle Inhalt der QuelleDissertationen zum Thema "Plant root pathogens"
Odom, Jennifer Lorraine. „Evaluation of Field Pea Varieties for Resistance to Fusarium Root Rot Pathogens“. Thesis, North Dakota State University, 2017. https://hdl.handle.net/10365/28500.
Der volle Inhalt der QuelleMatheron, Michael E., Kevin M. Crosby und Martin Porchas. „Interaction of Pepper Experimental Lines with Phytophthora Crown and Root Rot in 2000“. College of Agriculture and Life Sciences, University of Arizona (Tucson, AZ), 2001. http://hdl.handle.net/10150/214919.
Der volle Inhalt der QuelleMatheron, Michael E., und Martin Porchas. „Activity of Actigard® on Development of Phytophthora Root and Crown Rot on Pepper Plants“. College of Agriculture and Life Sciences, University of Arizona (Tucson, AZ), 2002. http://hdl.handle.net/10150/214945.
Der volle Inhalt der QuelleNischwitz, C., Mary Olsen und S. Rasmussen. „Influence of Salinity and Root-knot Nematode as Stress Factors in Charcoal Rot of Melon“. College of Agriculture and Life Sciences, University of Arizona (Tucson, AZ), 2002. http://hdl.handle.net/10150/214946.
Der volle Inhalt der QuelleLevenfors, Jens. „Soil-borne pathogens in intensive legume cropping - Aphanomyces spp. and root rots /“. Uppsala : Dept. of Plant Pathology and Biocontrol Unit, Swedish Univ. of Agricultural Sciences, 2003. http://epsilon.slu.se/a393.pdf.
Der volle Inhalt der QuelleOlsen, M., M. McClure und S. Husman. „Effect of Preplant Fumigation on Yield of Chile Pepper Infected with Root-Knot Nematode“. College of Agriculture, University of Arizona (Tucson, AZ), 2000. http://hdl.handle.net/10150/220003.
Der volle Inhalt der QuelleMatheron, Michael E., und Martin Porchas. „Comparative Effect of Five Fungicides on the Development of Root and Stem Rot and Survival of Chile Pepper Plants Grown in Field Soil Naturally Infested with Phytophthora capsici“. College of Agriculture, University of Arizona (Tucson, AZ), 2000. http://hdl.handle.net/10150/220000.
Der volle Inhalt der QuelleSanabria, Andres SANABRIA. „EFFECTS OF ANAEROBIC SOIL DISINFESTATION COMBINED WITH BIOLOGICAL CONTROL ON ROOT-KNOT NEMATODE AND LETTUCE DROP“. The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1534496965018979.
Der volle Inhalt der QuelleMartin, Dana. „Investigation of the Biocontrol Activity in vitro and in planta of Different Pseudomonas Species Against Important Crown, Stem, Foliar and Root Pathogens of Ornamental Crops“. The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1503063395390704.
Der volle Inhalt der QuelleAZEVEDO, Thamara de Medeiros. „Expressão quantitativa de genes de Phytophthora parasitica e de citros durante a interação“. Universidade Federal de Campina Grande, 2016. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/1151.
Der volle Inhalt der QuelleMade available in DSpace on 2018-07-11T20:50:26Z (GMT). No. of bitstreams: 1 Dissertação Thamara - Capa Dura.pdf: 2260125 bytes, checksum: 530ae87f1e4a9200aafe1cb3102cff39 (MD5) Previous issue date: 2016-08-19
CNPq
A gomose, provocada principalmente pelo oomiceto Phytophthora parasitica, é uma das mais graves doenças que acometem culturas de citros no âmbito mundial. Durante a interação, plantas induzem cascatas de sinalização a fim de induzir respostas de defesa. Contudo, P. parasitica secreta proteínas efetoras capazes de modular estas respostas por parte do hospedeiro, a fim de promover a infecção. No gênero Citrus, espécies comercialmente importantes são suscetíveis a infecção por este patógeno e a resistência a gomose é encontrada na espécie de citros Poncirus trifoliata. Considerando a escassez de informações acerca do patossistema citros-P. parasitica, o presente trabalho objetivou analisar, por meio de RT-qPCR, a expressão quantitativa de genes efetores apoplásticos e citoplasmáticos de P. parasitica e da cascata de defesa em citros, durante interações com espécies suscetíveis e resistentes, Citrus sunki e P. trifoliata, respectivamente. Dos 17 genes efetores estudados, 10 apresentaram expressão quantitativa relativa diferencial ao nível de significância induzida em P. parasitica após inoculação em raízes de P. trifoliata, sendo 06 apoplásticos e 04 citosólicos. Os perfis de expressão dos 17 genes efetores de P. parasitica apresentaram dois picos máximos de expressão, indicativos da síntese de novo desses genes ao longo dos pontos temporais de interação, sendo o acúmulo dos transcritos mais precoce sobre P. trifoliata (as 6 h.a.i.) e mais tardio sobre C. sunki (as 96 h.a.i.). Os elevados níveis de expressão de genes efetores em P. parasitica induzidos por C. sunki as 96 h.a.i. devem corresponder a fase necrotrófica de vida do oomiceto, consequentemente devido ao sucesso na penetração das células vegetais suscetíveis e acúmulo de biomassa do patógeno. A presença de hifas intracelulares no córtex de raízes de C. sunki foi abundantemente visualizada em micrografias as 96 h.a.i., a qual deve ocorrer como consequência da suscetibilidade da planta ao patógeno. Seis grupos hierárquicos de genes co-regulados foram formados a partir dos perfis de expressão dos 17 genes efetores em P. parasitica, os quais são reagrupados de modo diferente de acordo com a interação com C. sunki ou com P. trifoliata, indicando que o patógeno foi capaz de reconhecer entre hospedeiros suscetível ou resistente e sintetizar seletivamente quais efetores e em que intensidade devem ser segregados. As raízes de C. sunki expressaram 10 componentes de cascatas de resistência mediada pelo SA em resposta não bem-sucedida a infecção por P. parasitica. A supressão por P. parasitica da expressão de 05 genes de cascatas de resistência mediada pelo SA foi observada em raízes de P. trifoliata e deve indicar tentativas do patógeno de burlar com a imunidade da planta. Entretanto, a resistência de P. trifoliata a P. parasitica não deve utilizar genes envolvidos na cascata de resistência mediada pelo SA, mas sim genes PR-5 e calose sintase, envolvendo barreiras bioquímicas e estruturais. Portanto, o presente trabalho fornece uma nova visão para o entendimento acerca do processo de modulação de efetores de P. parasitica em interações suscetíveis e resistentes e, a maneira como estes hospedeiros respondem mediante interação
The gummosis, mainly caused by the oomycete Phytophthora parasitica, is one of the most serious diseases affecting citrus crops worldwide. During the interaction, plants induce signaling cascades in order to induce defense responses. However, P. parasitica secrets effector proteins capable of modulating these host responses in order to promote the infection. In Citrus genus, commercially important species are susceptible to infection by this pathogen and the gummosis resistance is achieved in Poncirus trifoliata citrus species. Considering the lack of information on citrus-P. parasitica pathosystem, this study aimed to analyze, through RT-qPCR, the quantitative expression of P. parasitica effector and citrus defense genes during citrus-P. parasitica susceptible and resistant interactions, with Citrus sunki and P. trifoliata, respectively. As results, P. parasitica was able to recognize among susceptible or resistant host and selectively synthesize which effectors and in that intensity should be expressed. Of the 17 studied effector genes, 10 showed quantitative relative differential expression at significance level induced in P. parasitica after inoculation in trifoliate orange roots, being 06 apoplastics and 04 cytosolics. The expression profiles for the 17 effector genes in P. parasitica had two maximum peaks of expression, that are indicative of de novo synthesis of these genes along the time points of interaction, showing transcript accumulation earlier on P. trifoliata (at 6 h.a.i.) and later on C. sunki (at 96 h.a.i.). High levels of the effector gene expression in P. parasitica induced by C. sunki at 96 h.a.i. must match the necrotrophic phase of life of this oomycete, consequently due to their successful penetration into the susceptible plant cells and pathogen biomass accumulation. The presence of intracellular hyphae in cortex of C. sunki roots was abundantly visualized in the micrographs at 96 h.a.i., which may occur as a result of the plant susceptibility to the pathogen. Six hierarchical groups of co-regulated genes were formed from the expression profiles of the 17 effector genes in P. parasitica, which are grouped differently according to interact with C. sunki or P. trifoliata, indicating that the pathogen was able to recognize between susceptible or resistant host and selectively synthesize which effectors and in that intensity should be segregated. The roots of C. sunki expressed 10 components of the cascade resistance mediated by SA in response not successful to P. parasitica infection. The suppression by P. parasitica of the expression of 05 genes of the cascade resistance mediated by SA was found in P. trifoliata roots, and must indicate pathogen attempts to circumvent with the immunity of the plant. However, P. trifoliata resistance to P. parasitica should not use genes involved in the resistance cascade mediated by SA, but instead PR-5 and callose synthase genes, involving biochemical and estructural barriers. In conclusion, this study provides a new insight into the understanding of the effectors of modulation process of P. parasitica in susceptible and resistant interactions and how these hosts respond through interaction.
Bücher zum Thema "Plant root pathogens"
L, Campbell C., und Benson D. M. 1945-, Hrsg. Epidemiology and management of root diseases. Berlin: Springer-Verlag, 1994.
Den vollen Inhalt der Quelle findenCapretti, Paolo, Cecilia Comparini, Matteo Garbelotto und Nicola La Porta, Hrsg. XIII Conference "Root and Butt Rot of Forest Trees" IUFRO Working Party 7.02.01. Florence: Firenze University Press, 2013. http://dx.doi.org/10.36253/978-88-6655-353-3.
Der volle Inhalt der QuellePeterson, Michael James. Sanitation of styroblocks to control algae and seedling root rot fungi. Victoria, B.C: Forestry Canada, 1990.
Den vollen Inhalt der Quelle findenThies, Walter Gene. Laminated root rot in Western North America. Portland, Or: U.S. Dept. of Agriculture, Forest Service, Pacific Northwest Research Station, 1995.
Den vollen Inhalt der Quelle findenGeiger, Jean-Paul. Maladies racinaires de l'hévéa: Biochimie et physiologie des relations hôte-parasite. Paris: Editions de l'ORSTOM, 1987.
Den vollen Inhalt der Quelle findenStirling, Graham, Helen Hayden, Tony Pattison und Marcelle Stirling. Soil Health, Soil Biology, Soilborne Diseases and Sustainable Agriculture. CSIRO Publishing, 2016. http://dx.doi.org/10.1071/9781486303052.
Der volle Inhalt der QuelleDommergues, Y. R. Interactions Between Non-Pathogenic Soil Microorganisms and Plants. Elsevier, 2012.
Den vollen Inhalt der Quelle findenMarsden, M. A. Sensitivity of the western root disease model: inventory of root disease. 1992.
Den vollen Inhalt der Quelle findenLaminated root rot in Western North America. [Portland, Or.]: U.S. Dept. of Agriculture, Forest Service, Pacific Northwest Research Station, 1995.
Den vollen Inhalt der Quelle findenKirchman, David L. Symbioses and microbes. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198789406.003.0014.
Der volle Inhalt der QuelleBuchteile zum Thema "Plant root pathogens"
Termorshuizen, Aad J. „Root Pathogens“. In Interactions in Soil: Promoting Plant Growth, 119–37. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8890-8_6.
Der volle Inhalt der QuelleOkubara, Patricia A., und Timothy C. Paulitz. „Root defense responses to fungal pathogens: A molecular perspective“. In Plant Ecophysiology, 215–26. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/1-4020-4099-7_11.
Der volle Inhalt der QuelleFallath, Thorya, Ahmad Bin Rosli, Brendan Kidd, Lilia C. Carvalhais und Peer M. Schenk. „Toward Plant Defense Mechanisms Against Root Pathogens“. In Agriculturally Important Microbes for Sustainable Agriculture, 293–313. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5343-6_10.
Der volle Inhalt der QuellePinhey, Sally, und Margaret Tebbs. „The role of fungi.“ In Plants for soil regeneration: an illustrated guide, 23–27. Wallingford: CABI, 2022. http://dx.doi.org/10.1079/9781789243604.0005.
Der volle Inhalt der Quelleda Silva Campos, Maryluce Albuquerque. „Applications of Arbuscular Mycorrhizal Fungi in Controlling Root-Knot Nematodes“. In Arbuscular Mycorrhizal Fungi and Higher Plants, 225–37. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8220-2_10.
Der volle Inhalt der QuelleKroschel, Jürgen, und Dorette Müller-Stöver. „Biological Control of Root Parasitic Weeds with Plant Pathogens“. In Weed Biology and Management, 423–38. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-94-017-0552-3_21.
Der volle Inhalt der QuelleBruggen, Ariena H. C., und Niklaus J. Grünwald. „Tests for Risk Assessment of Root Infection by Plant Pathogens“. In SSSA Special Publications, 293–310. Madison, WI, USA: Soil Science Society of America, 2015. http://dx.doi.org/10.2136/sssaspecpub49.c17.
Der volle Inhalt der QuelleHafez, Saad L., und Sundararaj Palanisamy. „Integrated nematode management of root-knot and root lesion nematodes in Idaho potatoes: major economic limiting factors.“ In Integrated nematode management: state-of-the-art and visions for the future, 340–46. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789247541.0047.
Der volle Inhalt der QuelleNISHIMURA, HIROYUKI, und ATSUSHI SATOH. „ANTIMICROBIAL AND NEMATICIDAL SUBSTANCES FROM THE ROOT OF CHICORY(Cichorium intybus)“. In Allelochemicals: Biological Control of Plant Pathogens and Diseases, 177–80. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4447-x_9.
Der volle Inhalt der QuelleRoberts, Philip A. „Integrated management of root-knot and other nematodes in food legumes.“ In Integrated nematode management: state-of-the-art and visions for the future, 132–37. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789247541.0019.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Plant root pathogens"
Yin, Chuntao. „Disease-induced changes in the rhizosphere microbiome reduced root disease“. In IS-MPMI Congress. IS-MPMI, 2023. http://dx.doi.org/10.1094/ismpmi-2023-5r.
Der volle Inhalt der QuelleMihnea, Nadejda. „Reacția unor linii de tomate la izolatele fungului Alternaria alternata“. In VIIth International Scientific Conference “Genetics, Physiology and Plant Breeding”. Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2021. http://dx.doi.org/10.53040/gppb7.2021.64.
Der volle Inhalt der QuelleSasco, Elena. „Variabilitatea patogenității unor agenți fungici ai putregaiului de rădăcină la grâul comun de toamnă“. In International Scientific Symposium "Plant Protection – Achievements and Prospects". Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2020. http://dx.doi.org/10.53040/9789975347204.08.
Der volle Inhalt der QuelleCers, I. D., V. Yu Gorshkov, R. F. Gubaev, N. E. Gogoleva und Yu V. Gogolev. „Pathogen-induced changes in gene expression of tobacco plants with development of soft rot caused by Pectobacterium atrosepticum“. In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-461.
Der volle Inhalt der QuelleСтратулат, Татьяна, Татьяна Щербакова, Штефан Кручан und Андрей Лунгу. „Пораженность листвы древесных насаждений города Кишинева комплексом гнилей летом 2021 года“. In VIIth International Scientific Conference “Genetics, Physiology and Plant Breeding”. Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2021. http://dx.doi.org/10.53040/gppb7.2021.92.
Der volle Inhalt der QuelleMikhalev, E. V., und D. D. Khilov. „INFLUENCE OF VARIOUS TYPES OF ORGANIC WASTE OF AGROINDUSTRIAL COMPLEX ON PRODUCTIVITY OF ROW CROPS IN THE CONDITIONS OF THE NIZHNY NOVGOROD REGION“. In STATE AND DEVELOPMENT PROSPECTS OF AGRIBUSINESS Volume 2. DSTU-Print, 2020. http://dx.doi.org/10.23947/interagro.2020.2.494-497.
Der volle Inhalt der QuelleКрым, Инесса. „Определение устойчивости картофеля к бурой бактериальной гнили в лабораторных условиях“. In VIIth International Scientific Conference “Genetics, Physiology and Plant Breeding”. Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2021. http://dx.doi.org/10.53040/gppb7.2021.79.
Der volle Inhalt der QuelleKuznetsov, M. A., A. A. Scherbakov, S. V. Ivashchenko, E. A. Gorelnikova und N. S. Chervyakova. „Identification black rot pathogen Xanthomonas campestris pv. campestris with biochemical tests“. In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.147.
Der volle Inhalt der QuelleGovender, Nisha. „In silico identification of Dicer-like proteins in Gaderma boninense, the basal stem rot of oil palm pathogen“. In ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1052033.
Der volle Inhalt der QuelleScerbacova, Tatiana, Alina Lungu, Boris Pinzaru und Leonid Volosciuc. „Testarea preparatului biologic SCLEROTSYD® pentru protecția florii soarelui de putregaiul alb“. In Scientific International Symposium "Plant Protection – Achievements and Perspectives". Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2023. http://dx.doi.org/10.53040/ppap2023.32.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Plant root pathogens"
Katan, Jaacov, und Michael E. Stanghellini. Clinical (Major) and Subclinical (Minor) Root-Infecting Pathogens in Plant Growth Substrates, and Integrated Strategies for their Control. United States Department of Agriculture, Oktober 1993. http://dx.doi.org/10.32747/1993.7568089.bard.
Der volle Inhalt der QuelleCytryn, Eddie, Mark R. Liles und Omer Frenkel. Mining multidrug-resistant desert soil bacteria for biocontrol activity and biologically-active compounds. United States Department of Agriculture, Januar 2014. http://dx.doi.org/10.32747/2014.7598174.bard.
Der volle Inhalt der QuelleCytryn, E., Sean F. Brady und O. Frenkel. Cutting edge culture independent pipeline for detection of novel anti-fungal plant protection compounds in suppressive soils. Israel: United States-Israel Binational Agricultural Research and Development Fund, 2022. http://dx.doi.org/10.32747/2022.8134142.bard.
Der volle Inhalt der QuelleHarman, Gary E., und Ilan Chet. Enhancement of plant disease resistance and productivity through use of root symbiotic fungi. United States Department of Agriculture, Juli 2008. http://dx.doi.org/10.32747/2008.7695588.bard.
Der volle Inhalt der QuelleMacDonald, James D., Aharon Abeliovich, Manuel C. Lagunas-Solar, David Faiman und John Kabshima. Treatment of Irrigation Effluent Water to Reduce Nitrogenous Contaminants and Plant Pathogens. United States Department of Agriculture, Juli 1993. http://dx.doi.org/10.32747/1993.7568092.bard.
Der volle Inhalt der QuelleHoitink, Harry A. J., Yitzhak Hadar, Laurence V. Madden und Yona Chen. Sustained Suppression of Pythium Diseases: Interactions between Compost Maturity and Nutritional Requirements of Biocontrol Agents. United States Department of Agriculture, Juni 1993. http://dx.doi.org/10.32747/1993.7568755.bard.
Der volle Inhalt der QuelleHoitink, Harry A. J., Yitzhak Hadar, Laurence V. Madden und Yona Chen. Sustained Suppression of Pythium Diseases: Interactions between Compost Maturity and Nutritional Requirements of Biocontrol Agents. United States Department of Agriculture, Juni 1993. http://dx.doi.org/10.32747/1993.7568746.bard.
Der volle Inhalt der QuelleChamovitz, A. Daniel, und Georg Jander. Genetic and biochemical analysis of glucosinolate breakdown: The effects of indole-3-carbinol on plant physiology and development. United States Department of Agriculture, Januar 2012. http://dx.doi.org/10.32747/2012.7597917.bard.
Der volle Inhalt der QuelleDavis, Eric L., Yuji Oka, Amit Gal-On, Todd Wehner und Aaron Zelcer. Broad-spectrum Resistance to Root-Knot Nematodes in Transgenic Cucurbits. United States Department of Agriculture, Juni 2013. http://dx.doi.org/10.32747/2013.7593389.bard.
Der volle Inhalt der QuelleBrown Horowitz, Sigal, Eric L. Davis und Axel Elling. Dissecting interactions between root-knot nematode effectors and lipid signaling involved in plant defense. United States Department of Agriculture, Januar 2014. http://dx.doi.org/10.32747/2014.7598167.bard.
Der volle Inhalt der Quelle