Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Plant molecular genetics“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Plant molecular genetics" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Plant molecular genetics"
Pánková, K. „Stephen H. Howell – Molecular Genetics of Plant Development“. Czech Journal of Genetics and Plant Breeding 38, No. 3-4 (01.08.2012): 135–36. http://dx.doi.org/10.17221/6250-cjgpb.
Der volle Inhalt der QuelleGold, Scott. „Plant molecular genetics“. Crop Protection 16, Nr. 5 (August 1997): 491. http://dx.doi.org/10.1016/s0261-2194(97)84559-0.
Der volle Inhalt der QuelleMeinke, D. W. „Molecular Genetics of Plant Embryogenesis“. Annual Review of Plant Physiology and Plant Molecular Biology 46, Nr. 1 (Juni 1995): 369–94. http://dx.doi.org/10.1146/annurev.pp.46.060195.002101.
Der volle Inhalt der QuelleCortés, Andrés J., und Hai Du. „Molecular Genetics Enhances Plant Breeding“. International Journal of Molecular Sciences 24, Nr. 12 (09.06.2023): 9977. http://dx.doi.org/10.3390/ijms24129977.
Der volle Inhalt der QuelleWatanabe, K. N., und J. A. Watanabe. „Genetic Diversity and Molecular Genetics of Ornamental Plant Species“. Biotechnology & Biotechnological Equipment 14, Nr. 2 (Januar 2000): 19–21. http://dx.doi.org/10.1080/13102818.2000.10819081.
Der volle Inhalt der QuelleStaskawicz, B., F. Ausubel, B. Baker, J. Ellis und J. Jones. „Molecular genetics of plant disease resistance“. Science 268, Nr. 5211 (05.05.1995): 661–67. http://dx.doi.org/10.1126/science.7732374.
Der volle Inhalt der QuelleMeyerowitz, E. M., und R. E. Pruitt. „Arabidopsis thaliana and Plant Molecular Genetics“. Science 229, Nr. 4719 (20.09.1985): 1214–18. http://dx.doi.org/10.1126/science.229.4719.1214.
Der volle Inhalt der QuelleHightower, Robin C., und Richard B. Meagher. „THE MOLECULAR EVOLUTION OF ACTIN“. Genetics 114, Nr. 1 (01.09.1986): 315–32. http://dx.doi.org/10.1093/genetics/114.1.315.
Der volle Inhalt der QuellePaolis, Angelo, Giovanna Frugis, Donato Giannino, Maria Iannelli, Giovanni Mele, Eddo Rugini, Cristian Silvestri et al. „Plant Cellular and Molecular Biotechnology: Following Mariotti’s Steps“. Plants 8, Nr. 1 (10.01.2019): 18. http://dx.doi.org/10.3390/plants8010018.
Der volle Inhalt der QuelleMotley, Timothy J. „Molecular Markers in Plant Genetics and Biotechnology“. Brittonia 56, Nr. 3 (August 2004): 294. http://dx.doi.org/10.1663/0007-196x(2004)056[0294:br]2.0.co;2.
Der volle Inhalt der QuelleDissertationen zum Thema "Plant molecular genetics"
Lim, Saw Hoon. „Molecular analysis of porphobilinogen deaminase in higher plants“. Thesis, University of Cambridge, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259764.
Der volle Inhalt der QuellePhelan, Thomas Joseph. „GENETIC AND MOLECULAR ANALYSIS OF PLANT NUCLEAR MATRIX PROTEINS“. NCSU, 2001. http://www.lib.ncsu.edu/theses/available/etd-20011104-233111.
Der volle Inhalt der QuellePHELAN, THOMAS JOSEPH, Genetic and Molecular Analysis of Plant Nuclear Matrix Proteins. (Under the direction of Steven L. Spiker.)The eukaryotic nucleus is composed of DNA, RNA and protein, encapsulated by a nuclear envelope. DNA is compacted up to ten thousand times in order to be packaged into the nucleus. The nucleus must maintain order in the presence of a very high density and variety of protein and RNA. The nuclear matrix is a proteinaceous network thought to provide structure and organization to the nucleus. We believe that relatively stable interactions of nuclear molecules with the nuclear matrix are key to organization of the nucleus. Numerous "Matrix Attachment Region" DNA elements (MARs), have been isolated from plants, animals, and fungi. Evidence suggests that these MARs attach to the nuclear matrix, delimiting loops of chromosomal DNA. In studies of transgenic plants and animals, MARs have been shown to give important advantages to organisms transformed with genes flanked by these elements. Unlike most DNA elements, no specific sequence elements have been identified in MAR DNAs. Partly due to the insolubility of the matrix, and to the heterogeneity of MAR DNA, very few of the protein components of the nuclear matrix have been identified. This work presents analysis the proteins of the plant nuclear matrix. We have characterized a set of related proteins from the model plant Arabidopsis that associate with MAR DNA in vitro. These proteins appear to be similar to the NOP56/NOP58 family of proteins previously identified in several eukaryotic organisms. The NOP56/NOP58 proteins are thought to be involved in modifications of ribosomal RNA. Binding studies presented in this work suggest that these plant proteins may participate in RNA/DNA/protein complexes in the nucleus.
Cowan, Rebecca. „Molecular domestication and transposon contributions to plant genome evolution“. Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=82211.
Der volle Inhalt der QuelleRyan, Lucy Anne. „The molecular biology of plant growth control“. Thesis, De Montfort University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.328065.
Der volle Inhalt der QuelleBitalo, Daphne Nyachaki. „Implementation of molecular markers for triticale cultivar identification and marker-assisted selection“. Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/71670.
Der volle Inhalt der QuelleTriticale is an amphidiploid that consists of wheat (A and B) and rye (R) genomes. This cereal is fast becoming important on a commercial basis and warrants further assessment for the better management and breeding of the hybrid. The assessment of the genetic diversity among the wheat and rye genomes within triticale can be obtained by using molecular markers developed in both donor genomes. Simple sequence repeats markers (SSRs) and amplified fragment length markers (AFLPs) have been previously used to assess the genetic diversity among triticale lines. SSRs are highly polymorphic markers that are abundant and which have been shown to be highly transferable between species in previous studies while AFLP markers are known to generate plenty of data as they cover so many loci. Thus, the aim of this study was to develop a marker system suitable to assess the genetic diversity and relationships of advanced breeding material (and cultivars) of the Stellenbosch University’s Plant Breeding Laboratory (SU-PBL). Therefore, both AFLP and SSR markers were initially analysed using eight triticale cultivars (with known pedigrees) to facilitate cultivar identification. Fourty-two AFLP primer combinations and 86 SSR markers were used to assess the genetic diversity among the Elite triticale cultivars. The AFLP primer combinations generated under average polymorphism information content (PIC) values. Furthermore, these markers generated neighbour-joining (NJ) and unweighted pair group method with arithmetic average (UPGMA) dendograms that displayed relationships that did not correspond with the available pedigree information. Therefore, this marker system was found not to be suitable. A set of 86 SSRs previously identified in both wheat and rye, was used to test the genetic diversity among the eight cultivars. The markers developed in wheat achieved 84% transferability while those developed in rye achieved 79.3% transferability. A subset of SSR markers was able to distinguish the cultivars, and correctly identify them by generating NJ and UPGMA dendograms that exhibited relationships that corroborated the available pedigree data. This panel of markers was therefore chosen as the most suitable for the assessment of the advanced breeding material. The panel of seven SSR markers was optimised for semi-automated analysis and was used to screen and detect the genetic diversity among 306 triticale entries in the F6, Senior and Elite phases of the SU-PBL triticale breeding programme. An average PIC value of 0.65 was detected and moderate genetic variation was observed. NJ and UPGMA dendograms generated showed no clear groupings. However, the panel of markers managed to accurately identify all cultivars within the breeding program. The marker panel developed in this study is being used to routinely distinguish among the advanced breeding material within the SU-PBL triticale breeding programme and as a tool in molecular-assisted backcross.
Juretic, Nikoleta. „The role of transposons in shaping plant genomes /“. Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=115687.
Der volle Inhalt der QuelleHorsley, David. „Molecular and structural studies of plant clathrin coated vesicles“. Thesis, University of Oxford, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.291323.
Der volle Inhalt der QuelleMoulton, Paul Jonathan. „The molecular genetics of Pseudomonas syringae pv. pisi“. Thesis, University of the West of England, Bristol, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.278900.
Der volle Inhalt der QuelleRussell, Joanne Ritchie. „Molecular variation in Theobroma species“. Thesis, University of Reading, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.386981.
Der volle Inhalt der QuelleHusselmann, Lizex H. H. „Molecular characterisation of the commercially important Agathosma species“. Thesis, Stellenbosch : University of Stellenbosch, 2006. http://hdl.handle.net/10019.1/3068.
Der volle Inhalt der QuelleThe development of a reliable and reproducible method for the genetic characterisation and identification of the commercially important Agathosma species was investigated. Previous research attempts aimed at developing a reliable and reproducible method of identifying these Agathosma species failed, mostly because these studies were based on phenotypic traits and these methods were therefore influenced by environmental factors. In this study amplified fragment length polymorphisms (AFLPs) were successfully used to quantify the genetic variation between the Agathosma species and as a result three distinct groups could be identified. The data obtained were elaborated with the Dice genetic similarity coefficient, and analysed using different clustering methods and Principle Coordinate Analysis (PCoA). Cluster analysis of the genotypes revealed an overall genetic similarity between the populations of between 0.85 and 0.99. The AFLP-based dendrogram divided the populations into three major groups: (1) the A. serratifolia and A. crenulata populations, (2) the putative hybrid, A. betulina X A crenulata populations, and (3) the A. betulina populations, confirming that this technique can be used to identify species. The question of hybridisation was also clarified by the results of the PCoA, confirming that the putative hybrid is not genetically intermediately spread between the A. crenulata and A. betulina populations, and that it is genetically very similar to A. betulina. The putative hybrid can therefore rather be viewed as a genetically distinct ecological variant of A. betulina. As the AFLP technique cannot be directly applied in large-scale, routine investigations due to its high cost and complicated technology, the development of polymerase chain reaction (PCR)-based molecular markers, able to accurately identify the species, was undertaken. Due to the superior quality of A. betulina oil, the development of such markers is especially critical for this species. Several species-specific AFLP markers were identified, converted to sequence characterised amplified regions (SCARs) and ultimately single nucleotide polymorphisms (SNPs) were characterised. The developed SCARs were unable to distinguish between the species. The conversion of AFLP fragments to SCARs is problematic due to multiple fragments being amplified with the AFLP fragment of interest. The diagnostic feature of the SNP-based markers was not sensitive enough, since this technique could not distinguish between the A. betulina and A. crenulata and/or the putative hybrid populations. The SNPs that were characterised were found not to be species-specific; they were only specific to the particular clone. Although a quick and robust marker specific for A. betulina has not yet been developed, this study sets the stage for future genetic studies on Agathosma species. Such a marker, or set of markers, would be an invaluable contribution to a blooming buchu oil industry.
Bücher zum Thema "Plant molecular genetics"
Howell, Stephen H. Molecular genetics of plant development. Cambridge, UK: Cambridge University Press, 1998.
Den vollen Inhalt der Quelle findenSobral, Bruno W. S. 1958-, Hrsg. The impact of plant molecular genetics. Cambridge, MA, U.S.A: Birkhaüser, 1996.
Den vollen Inhalt der Quelle findenXu, Yunbi. Molecular plant breeding. Cambridge, MA: CABI North American Office, 2010.
Den vollen Inhalt der Quelle findenVarshney, Rajeev K., Manish K. Pandey und Annapurna Chitikineni, Hrsg. Plant Genetics and Molecular Biology. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91313-1.
Der volle Inhalt der QuelleMurphy, Terence M. Molecular plant development. Englewood Cliffs, N.J: Prentice Hall, 1988.
Den vollen Inhalt der Quelle findenB, Cronk Quentin C., und National Research Council Canada, Hrsg. Plant adaptation: Molecular genetics and ecology. Ottawa: NRC Research Press, 2004.
Den vollen Inhalt der Quelle findenArthur, Weissbach, und Weissbach Herbert, Hrsg. Plant molecular biology. Orlando, Fla: Academic Press, 1986.
Den vollen Inhalt der Quelle findenNATO Advanced Study Institute on Plant Molecular Biology (1987 Carlsberg Laboratory). Plant molecular biology. New York: Plenum Press, 1987.
Den vollen Inhalt der Quelle findenB, Gelvin Stanton, und Schilperoort Robbert A, Hrsg. Plant molecular biology manual. 2. Aufl. Dordrecht: Kluwer Academic, 1994.
Den vollen Inhalt der Quelle findenVerma, Desh Pal S., und Normand Brisson, Hrsg. Molecular genetics of plant-microbe interactions. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-4482-4.
Der volle Inhalt der QuelleBuchteile zum Thema "Plant molecular genetics"
Hooykaas, Paul J. J. „Agrobacterium molecular genetics“. In Plant Molecular Biology, 83–87. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-017-6951-8_5.
Der volle Inhalt der QuelleHooykaas, Paul J. J. „Agrobacterium molecular genetics“. In Plant Molecular Biology Manual, 65–77. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-017-5294-7_4.
Der volle Inhalt der QuelleHooykaas, Paul J. J. „Agrobacterium molecular genetics“. In Plant Molecular Biology Manual, 49–61. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-0951-9_4.
Der volle Inhalt der QuelleHooykaas, Paul J. J., und Teresa Mozo. „Agrobacterium molecular genetics“. In Plant Molecular Biology Manual, 75–83. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0511-8_5.
Der volle Inhalt der QuelleWhite, Derek W. R., Derek R. Woodfield, Brigitta Dudas, Richard L. S. Forster und David L. Beck. „White Clover Molecular Genetics“. In Plant Breeding Reviews, 191–223. Oxford, UK: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470650134.ch4.
Der volle Inhalt der Quellevon Wettstein-Knowles, Penny. „Barley Raincoats: Biosynthesis and Genetics“. In Plant Molecular Biology, 305–14. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4615-7598-6_28.
Der volle Inhalt der QuelleAhlquist, Paul. „Molecular Biology and Molecular Genetics of Plant Bromoviruses“. In Plant Molecular Biology, 419–31. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4615-7598-6_39.
Der volle Inhalt der QuelleGoldschmidt-Clermont, M., Y. Choquet, M. Kuchka, J. Girard-Bascou, P. Bennoun, V. Kück und J. D. Rochaix. „Molecular Genetics of Photosynthesis in Chlamydomonas“. In Plant Molecular Biology, 644. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4615-7598-6_78.
Der volle Inhalt der QuelleKhush, Gurdev S. „Molecular Genetics — Plant Breeder’s Perspective“. In Molecular Techniques in Crop Improvement, 1–8. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-2356-5_1.
Der volle Inhalt der QuelleZaya, David N., und Mary V. Ashley. „Plant Genetics for Forensic Applications“. In Methods in Molecular Biology, 35–52. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-609-8_4.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Plant molecular genetics"
„Molecular phylogeny of plant 14-3-3 proteins family“. In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-133.
Der volle Inhalt der Quelle„Molecular, сytogenetic, and morphological features of primary octoploid triticale“. In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-055.
Der volle Inhalt der Quelle„Molecular genetic methods for assessing drought resistance of spring barley“. In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-142.
Der volle Inhalt der Quelle„Molecular analysis of sugar beet samples using the RAPD method“. In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-001.
Der volle Inhalt der Quelle„Molecular-genetic analysis of genome incompatibility in wheat-rye hybrids“. In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-206.
Der volle Inhalt der Quelle„Molecular analysis of BC1F1 and BC2F1 cotton hybrids using SSR markers“. In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-022.
Der volle Inhalt der Quelle„Quantitative real-time PCR as a supplementary tool for molecular cytogenetics“. In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-044.
Der volle Inhalt der Quelle„Molecular-cytological analysis of common wheat lines with Triticum dicoccoides genetic material“. In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-150.
Der volle Inhalt der Quelle„Molecular mechanisms of the drought tolerance in common wheat – a transcriptomic approach“. In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-129.
Der volle Inhalt der Quelle„Identification of the molecular markers linked to the chosen genes in cereals“. In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-091.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Plant molecular genetics"
Chamovitz, Daniel A., und Zhenbiao Yang. Chemical Genetics of the COP9 Signalosome: Identification of Novel Regulators of Plant Development. United States Department of Agriculture, Januar 2011. http://dx.doi.org/10.32747/2011.7699844.bard.
Der volle Inhalt der QuelleZhang, Hongbin B., David J. Bonfil und Shahal Abbo. Genomics Tools for Legume Agronomic Gene Mapping and Cloning, and Genome Analysis: Chickpea as a Model. United States Department of Agriculture, März 2003. http://dx.doi.org/10.32747/2003.7586464.bard.
Der volle Inhalt der QuelleBlum, Abraham, Henry T. Nguyen und N. Y. Klueva. The Genetics of Heat Shock Proteins in Wheat in Relation to Heat Tolerance and Yield. United States Department of Agriculture, August 1993. http://dx.doi.org/10.32747/1993.7568105.bard.
Der volle Inhalt der QuelleMorrison, Mark, Joshuah Miron, Edward A. Bayer und Raphael Lamed. Molecular Analysis of Cellulosome Organization in Ruminococcus Albus and Fibrobacter Intestinalis for Optimization of Fiber Digestibility in Ruminants. United States Department of Agriculture, März 2004. http://dx.doi.org/10.32747/2004.7586475.bard.
Der volle Inhalt der QuelleGera, Abed, Abed Watad, P. Ueng, Hei-Ti Hsu, Kathryn Kamo, Peter Ueng und A. Lipsky. Genetic Transformation of Flowering Bulb Crops for Virus Resistance. United States Department of Agriculture, Januar 2001. http://dx.doi.org/10.32747/2001.7575293.bard.
Der volle Inhalt der QuelleJander, Georg, Gad Galili und Yair Shachar-Hill. Genetic, Genomic and Biochemical Analysis of Arabidopsis Threonine Aldolase and Associated Molecular and Metabolic Networks. United States Department of Agriculture, Januar 2010. http://dx.doi.org/10.32747/2010.7696546.bard.
Der volle Inhalt der QuelleKistler, Harold Corby, und Talma Katan. Identification of DNA Unique to the Tomato Fusarium Wilt and Crown Rot Pathogens. United States Department of Agriculture, September 1995. http://dx.doi.org/10.32747/1995.7571359.bard.
Der volle Inhalt der QuelleCahaner, Avigdor, Susan J. Lamont, E. Dan Heller und Jossi Hillel. Molecular Genetic Dissection of Complex Immunocompetence Traits in Broilers. United States Department of Agriculture, August 2003. http://dx.doi.org/10.32747/2003.7586461.bard.
Der volle Inhalt der QuelleRon, Eliora, und Eugene Eugene Nester. Global functional genomics of plant cell transformation by agrobacterium. United States Department of Agriculture, März 2009. http://dx.doi.org/10.32747/2009.7695860.bard.
Der volle Inhalt der QuelleAzem, Abdussalam, George Lorimer und Adina Breiman. Molecular and in vivo Functions of the Chloroplast Chaperonins. United States Department of Agriculture, Juni 2011. http://dx.doi.org/10.32747/2011.7697111.bard.
Der volle Inhalt der Quelle