Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Plant gas exchange“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Plant gas exchange" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Plant gas exchange"
Sperry, John S. „Hydraulic constraints on plant gas exchange“. Agricultural and Forest Meteorology 104, Nr. 1 (Juli 2000): 13–23. http://dx.doi.org/10.1016/s0168-1923(00)00144-1.
Der volle Inhalt der QuelleHuang, Guang-Ming, Ying-Ning Zou, Qiang-Sheng Wu, Yong-Jie Xu und Kamil Kuča. „Mycorrhizal roles in plant growth, gas exchange, root morphology, and nutrient uptake of walnuts“. Plant, Soil and Environment 66, No. 6 (23.06.2020): 295–302. http://dx.doi.org/10.17221/240/2020-pse.
Der volle Inhalt der QuelleSouza, Gustavo M., Steven M. Pincus und José Alberto F. Monteiro. „The complexity-stability hypothesis in plant gas exchange under water deficit“. Brazilian Journal of Plant Physiology 17, Nr. 4 (Dezember 2005): 363–73. http://dx.doi.org/10.1590/s1677-04202005000400004.
Der volle Inhalt der QuelleProietti, P., F. Famiani und A. Tombesi. „Gas Exchange in Olive Fruit“. Photosynthetica 36, Nr. 3 (01.08.1999): 423–32. http://dx.doi.org/10.1023/a:1007028220042.
Der volle Inhalt der QuelleSolomos, Theophanes. „Principles of Gas Exchange in Bulky Plant Tissues“. HortScience 22, Nr. 5 (Oktober 1987): 766–71. http://dx.doi.org/10.21273/hortsci.22.5.766.
Der volle Inhalt der QuelleBABIDORICH, M. I., P. S. PENKOVA und O. A. REUTOVA. „OPTIMAL REALIZATION HEAT EXCHANGE IN THE PROCESSES OF GAS FRACTIONATION“. Applied Mathematics and Fundamental Informatics 6, Nr. 4 (2019): 039–45. http://dx.doi.org/10.25206/2311-4908-2019-6-4-39-45.
Der volle Inhalt der QuelleHejnák, V., H. Hniličková und F. Hnilička. „Effect of ontogeny, heterophylly and leaf position on the gas exchange of the hop plant“. Plant, Soil and Environment 60, No. 11 (04.11.2014): 525–30. http://dx.doi.org/10.17221/671/2014-pse.
Der volle Inhalt der QuelleLake, Janice A. „Gas exchange: new challenges with Arabidopsis“. New Phytologist 162, Nr. 1 (April 2004): 1–3. http://dx.doi.org/10.1111/j.1469-8137.2004.01019.x.
Der volle Inhalt der QuelleTarasov, S. I., und N. V. Gerling. „MEASUREMENT OF CO2 AND H2O FLOWS BETWEEN MEDIUM AND PLANTS BY INFRARED GAS ANALYZER BASED ON OPEN GAS EXCHANGE SYSTEM TAKING INTO ACCOUNT INSTRUMENTAL ERROR“. NAUCHNOE PRIBOROSTROENIE 32, Nr. 3 (30.08.2022): 75–103. http://dx.doi.org/10.18358/np-32-3-i75103.
Der volle Inhalt der QuelleWeiland, R. T., und T. E. Omholt. „Method for Monitoring Nitrogen Gas Exchange from Plant Foliage“. Crop Science 25, Nr. 2 (1985): 359. http://dx.doi.org/10.2135/cropsci1985.0011183x002500020039x.
Der volle Inhalt der QuelleDissertationen zum Thema "Plant gas exchange"
Maddison, Joanna Sarah. „Mechanisms underlying plant responses to elevated ozone“. Thesis, University of Newcastle Upon Tyne, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.312032.
Der volle Inhalt der QuelleBailey, David E. „Wetland Vegetation Dynamics and Ecosystem Gas Exchange in Response to Organic Matter Loading Rates“. W&M ScholarWorks, 2006. http://www.vims.edu/library/Theses/Bailey06.pdf.
Der volle Inhalt der QuelleSoumana, Diallo Amadou 1957. „The effects of water stress on gas-exchange in Pinus brutia, var eldarica“. Thesis, The University of Arizona, 1990. http://hdl.handle.net/10150/277326.
Der volle Inhalt der QuelleRavetta, Damián Andres. „Plant morphology and gas exchange in Hesperaloe: Influence on its adaptation for cultivation“. Diss., The University of Arizona, 1994. http://hdl.handle.net/10150/186643.
Der volle Inhalt der QuelleLangan, Anthony Mark. „Interactions between insect pests and the size, quality and gas exchange activity of cabbage plants (Brassica oleracea)“. Thesis, Manchester Metropolitan University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.265087.
Der volle Inhalt der QuelleGhannoum, Oula, of Western Sydney Hawkesbury University, Faculty of Agriculture and Horticulture und School of Horticulture. „Responses of C3 and C4 Panicum grasses to CO2 enrichment“. THESIS_FAH_HOR_Ghannoum_O.xml, 1997. http://handle.uws.edu.au:8081/1959.7/139.
Der volle Inhalt der QuelleDoctor of Philosophy (PhD)
Pereira, JordÃnia Maria Gabriel. „Production, gas exchange and nutritional status of watermelon, submited to different irrigation levels and doses of boro“. Universidade Federal do CearÃ, 2012. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=9015.
Der volle Inhalt der QuelleBoron, among micronutrients, is one that appears most often deficient in the soil, mainly due to the low availability of land and lack of knowledge of application and crop response to their application. As to the low availability in the soil, this condition is aggravated when the water shortage, since the mechanism involved in the contact with the root of boron is the mass flow that is directly proportional to the hydraulic conductivity. Regarding response to nutrient culture, it is believed that the optimal range between toxic and is very narrow. Therefore the objective of this study was to evaluate the effect of increasing doses of boron in watermelon crop irrigated with different irrigation in the municipality of Pentecost - CE. The statistical design was randomized block split plot with four replications. The plots were assessed four irrigation levels, 50%, 75%, 100% and 125% of potential evapotranspiration of the crop (ETpc) and subplots five levels, corresponding to 0.5, 1.5, 2.5, 3, 5, 4.5 kg ha-1 to B, taking with boric acid source. The boron contents in watermelon leaf tissue showed linear fit as a function of increasing doses and decreased linearly as a function of irrigation levels, ranging from 102.39 to 168.20 mg kg-1 and negatively correlated with productivity, indicating toxicity. Foliar N, P, K, Ca, Mg, Mn, Fe and Zn were not affected by irrigation and boron levels. Since sulfur and copper, influenced by irrigation and B levels, respectively. It was demonstrated effect of boron on the increased production of MSPA. The stomatal conductance, internal CO2 concentration and photosynthesis were not affected by factors, demonstrating that the blades did not impose on plants water scarcity, and that with the variables analyzed was impossible to pinpoint the influence of boron gas exchange. The crop transpiration was significantly affected by irrigation.
O boro, dentre os micronutrientes, à aquele que mais frequentemente se apresenta deficiente no solo, devido principalmente à baixa disponibilidade dos solos e a falta de conhecimento do requerimento e da resposta das culturas a sua aplicaÃÃo. Quanto à baixa disponibilidade no solo, tal condiÃÃo seria agravada, quando da escassez hÃdrica, uma vez que o mecanismo envolvido no contato do boro com a raiz à o fluxo de massa, que à diretamente proporcional à condutividade hidrÃulica do solo. A respeito da resposta da cultura ao nutriente, acredita-se que a faixa entre o nÃvel ideal e o tÃxico seja muito estreita. Sendo assim o objetivo deste trabalho foi avaliar o efeito da aplicaÃÃo de doses crescentes de boro na cultura da melancia irrigada com diferentes lÃminas de irrigaÃÃo, no municÃpio de Pentecoste â CE. O delineamento estatÃstico foi blocos casualizados com parcelas subdivididas e quatro repetiÃÃes. Nas parcelas foram avaliados quatro lÃminas de irrigaÃÃo, 50%, 75%, 100% e 125% da evapotranspiraÃÃo potencial da cultura (ETpc) e nas subparcelas cinco doses, correspondentes a 0,5, 1,5, 2,5, 3,5, 4,5 kg ha-1 de B, tendo com fonte o Ãcido bÃrico. Os teores de boro no tecido foliar da melancia apresentaram ajuste linear crescente em funÃÃo das doses e linear decrescente em funÃÃo das lÃminas de irrigaÃÃo, variando de 102,39 a 168,20 mg kg-1 e correlacionando negativamente com a produtividade, indicando toxidez. Os teores foliares de N, P, K, Ca, Mg, Mn, Fe e Zn, nÃo foram influenciados pelas lÃminas de irrigaÃÃo e doses de boro. Sendo o enxofre e o cobre, influenciados pelas lÃminas de irrigaÃÃo e doses de B, respectivamente. Foi demostrado efeito do boro sobre o incremento da produÃÃo de MSPA. A condutÃncia estomÃtica, concentraÃÃo interna de CO2 e a fotossÃntese nÃo foram influenciadas pelos fatores, demostrando que as lÃminas nÃo impuseram sobre as plantas uma escassez hÃdrica, e que com as variÃveis analisadas foi impossÃvel precisar a influencia do boro nas trocas gasosas. A transpiraÃÃo da cultura foi influenciada significativamente pelas lÃminas de irrigaÃÃo
Martorell, Lliteras Sebastià. „Understanding the regulation of leaf and plant gas Exchange under water stress with a process-based model of stomatal conductance“. Doctoral thesis, Universitat de les Illes Balears, 2014. http://hdl.handle.net/10803/288210.
Der volle Inhalt der QuelleHupp, Jason R. „Mechanistic basis of gas exchange in the Terrestrial Astomatal Acid Metabolism plant, "Chiloschista lunifera" (REICHB. F.) J. J. SM. (Orchidaceae)“. [Gainesville, Fla.] : University of Florida, 2006. http://purl.fcla.edu/fcla/etd/UFE0014180.
Der volle Inhalt der QuelleGhannoum, Oula. „Responses of C3 and C4 Panicum grasses to CO2 enrichment“. Thesis, View thesis View thesis, 1997. http://handle.uws.edu.au:8081/1959.7/139.
Der volle Inhalt der QuelleBücher zum Thema "Plant gas exchange"
Dennis, Ojima, und Svensson Bo H. 1946-, Hrsg. Trace gas exchange in a global perspective. Copenhagen K., Denmark: Munksgaard International Booksellers and Publishers, 1992.
Den vollen Inhalt der Quelle findenPieruschka, Roland. Effect of internal leaf structures on gas exchange of leaves. Jülich: Forschungszentrum, 2005.
Den vollen Inhalt der Quelle findenCazier, Jean-Baptiste. Mathematical modelling of gas exchanges in film-wrapped cucumbers. Alnarp: Swedish University of Agricultural Sciences, 2000.
Den vollen Inhalt der Quelle findenHoltan-Hartwig, Liv. Ammonia exchange between crops and air. Ås, Norway: Agricultural University of Norway, Advisory Service, 1994.
Den vollen Inhalt der Quelle findenBoth, Ralf. Wirkungen gasförmiger Immissionen auf den CO₂/H₂O-Gaswechsel von Waldbodenpflanzen eines Melico-Fagetum. Frankfurt/M: Wissenschafts-Verlag W. Maraun, 1990.
Den vollen Inhalt der Quelle findenStickan, Walter. Auswirkungen von Umweltchemikalien auf den Gaswechsel von Grünlandpflanzen. Göttingen: E. Goltze, 1985.
Den vollen Inhalt der Quelle findenAgency, Illinois Environmental Protection. The Illinois Conservation and Climate Initiative: Earn revenue through the sale of greenhouse gas emissions credits. Chicago, Ill: Illinois Conservation and Climate Initiative, 2006.
Den vollen Inhalt der Quelle findenWheeler, R. M. Carbon dioxide and water exchange rates by a wheat crop in NASA's biomass production chamber: Results from an 86-day study (January to April 1989). [Kennedy Space Center, Fla.]: National Aeronautics and Space Administration, John F. Kennedy Space Center, 1990.
Den vollen Inhalt der Quelle findenWheeler, R. M. Carbon dioxide and water exchange rates by a wheat crop in NASA's biomass production chamber: Results from an 86-day study (January to April 1989). [Kennedy Space Center, Fla.]: National Aeronautics and Space Administration, John F. Kennedy Space Center, 1990.
Den vollen Inhalt der Quelle findenLaisk, Agu, und Vello Oja. Fast-response Photosynthetic Gas Exchange: Techniques and Applications (Plant Sciences Techniques Series). CSIRO Publishing, 1997.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Plant gas exchange"
Oehler, O., und H. Blum. „Photoacoustic Measurement of Plant Gas Exchange“. In Photoacoustic and Photothermal Phenomena II, 369–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-540-46972-8_95.
Der volle Inhalt der QuelleSharkey, T. D. „Analytical Gas Exchange Measurements of Photosynthetic CO2 Assimilation“. In Modern Methods of Plant Analysis, 73–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83346-5_5.
Der volle Inhalt der QuelleSorrell, Brian K., und Hans Brix. „Gas Transport and Exchange through Wetland Plant Aerenchyma“. In Methods in Biogeochemistry of Wetlands, 177–96. Madison, WI, USA: American Society of Agronomy and Soil Science Society of America, 2015. http://dx.doi.org/10.2136/sssabookser10.c11.
Der volle Inhalt der QuelleGolombek, S. D., und P. Lüdders. „Gas exchange of Ficus carica in response to salinity“. In Plant Nutrition — Physiology and Applications, 487–93. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0585-6_81.
Der volle Inhalt der QuelleLange, O. L., P. C. Harley, W. Beyschlag und J. D. Tenhunen. „Gas exchange methods for characterizing the impact of stress on leaves“. In Plant Response to Stress, 3–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-70868-8_1.
Der volle Inhalt der QuelleLambers, Hans, F. Stuart Chapin und Thijs L. Pons. „Scaling-Up Gas Exchange and Energy Balance from the Leaf to the Canopy Level“. In Plant Physiological Ecology, 230–38. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4757-2855-2_5.
Der volle Inhalt der QuelleLambers, Hans, F. Stuart Chapin und Thijs L. Pons. „Scaling-Up Gas Exchange and Energy Balance from the Leaf to the Canopy Level“. In Plant Physiological Ecology, 247–54. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-78341-3_8.
Der volle Inhalt der QuelleLambers, Hans, und Rafael S. Oliveira. „Scaling-Up Gas Exchange and Energy Balance from the Leaf to the Canopy Level“. In Plant Physiological Ecology, 291–300. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29639-1_8.
Der volle Inhalt der QuelleLawrence, W. T. „Gas exchange characteristics of representative species from the scrub vegetation of central Chile“. In Plant Response to Stress, 279–304. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-70868-8_17.
Der volle Inhalt der QuelleMeinzer, Frederick C., und Guillermo Goldstein. „Scaling up from Leaves to Whole Plants and Canopies for Photosynthetic Gas Exchange“. In Tropical Forest Plant Ecophysiology, 114–38. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-1163-8_4.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Plant gas exchange"
Bento, Carlos Henrique Pereira, Fabia Barbosa da Silva, Lucas de Jesus Silva, Amanda Ferreira Rodrigues, Filippo Giuseppe Parisi, Cláudio Witer Ferreira Pereira Júnior, Bruno Matheus Mendes Dário, MÁRCIO ROSA und Fabiano Guimarães Silva. „RED LIGHT IMPROVES GAS EXCHANGE IN STRAWBERRY GROWTH IN VERTICAL FARMING“. In Annals of the Brazilian Congress of Plant Physiology and Ibero-latinamerican Congress of Plant Biology. Recife, Brasil: Even3, 2022. http://dx.doi.org/10.29327/175303.1-2.
Der volle Inhalt der QuelleYuzbekov, A. K. „Evaluation of the carbon dioxide gas exchange of European spruce in southern taigafir tree“. In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-492.
Der volle Inhalt der QuelleJohnstone, Melanie, Bernard Grodzinski, Hai Yu und John Sutton. „Plant Disease Progress Can Be Monitored by CO2 Gas Exchange of the Plant Canopy“. In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1999. http://dx.doi.org/10.4271/1999-01-2023.
Der volle Inhalt der QuelleCornett, J. David, John E. Hendrix, Cleon W. Ross, Frank D. Moore und Willy Z. Sadeh. „A Model of Gas Exchange in a Closed Plant Growth Chamber“. In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1996. http://dx.doi.org/10.4271/961510.
Der volle Inhalt der QuelleBolondinsky, V. K. „The study of CO-gas exchange of the trunk and branches of 10-year-old birch seedlings“. In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-77.
Der volle Inhalt der QuelleDaunicht, H. J., C. Richter und J. Resemann. „An Autonomous Plant Cuvette for Advanced Climate Control and Gas Exchange Measurement“. In International Conference on Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1995. http://dx.doi.org/10.4271/951536.
Der volle Inhalt der QuelleGolovko, V. F., I. V. Dmitrieva und N. G. Kodochigov. „Research and Development of Compact Heat Exchangers of Gas Turbine Power Conversion Unit for Nuclear Power Plant With High Temperature Gas-Cooled Reactor“. In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-22587.
Der volle Inhalt der QuellePerkavec, M. A. „Gas Turbine Operating in Combined and Regenerative Cycles Using Liquid Metal Heat Exchangers“. In ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/93-gt-179.
Der volle Inhalt der QuelleStasiak, Michael, Richard Côté, Bernard Grodzinski und Michael Dixon. „Light Piping to the Inner Plant Canopy Enhances Plant Growth and Increases O2, CO2, H2O and Ethylene Gas Exchange Rates“. In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1999. http://dx.doi.org/10.4271/1999-01-2103.
Der volle Inhalt der QuelleSoudarev, A. V., B. V. Soudarev, V. B. Soudarev, A. A. Kondratiev und P. Avran. „Application of Cassette-Tube Airheaters as a Way to Improve the Mass-Size Characteristics of Regenerative Gas-Turbine Units“. In ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/99-gt-331.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Plant gas exchange"
Avnimelech, Yoram, Richard C. Stehouwer und Jon Chorover. Use of Composted Waste Materials for Enhanced Ca Migration and Exchange in Sodic Soils and Acidic Minespoils. United States Department of Agriculture, Juni 2001. http://dx.doi.org/10.32747/2001.7575291.bard.
Der volle Inhalt der QuellePell, Eva J., Sarah M. Assmann, Amnon Schwartz und Hava Steinberger. Ozone Altered Stomatal/Guard Cell Function: Whole Plant and Single Cell Analysis. United States Department of Agriculture, Dezember 2000. http://dx.doi.org/10.32747/2000.7573082.bard.
Der volle Inhalt der QuelleSolomon, P. R., Yuxin Zhao und D. S. Pines. Feasibility study for an advanced coal fired heat exchanger/gas turbine topping cycle for a high efficiency power plant. Office of Scientific and Technical Information (OSTI), Februar 1993. http://dx.doi.org/10.2172/7089854.
Der volle Inhalt der QuelleSolomon, P. R., Y. Zhao, D. Pines, R. C. Buggeln und S. J. Shamroth. Feasibility study for an advanced coal fired heat exchanger/gas turbine topping cycle for a high efficiency power plant. Final report. Office of Scientific and Technical Information (OSTI), November 1993. http://dx.doi.org/10.2172/10135308.
Der volle Inhalt der QuelleJones, Nicole S., Jeri D. Ropero-Miller, Heather Waltke, Danielle McLeod-Henning, Danielle Weiss und Hannah Barcus. Proceedings of the International Forensic Radiology Research Summit May 10–11, 2016, Amsterdam, The Netherlands. RTI Press, September 2017. http://dx.doi.org/10.3768/rtipress.2017.cp.0005.1709.
Der volle Inhalt der QuelleNiebler, Rebecca. Abfallwirtschaftliche Geschäftsmodelle für Textilien in der Circular Economy. Sonderforschungsgruppe Institutionenanalyse, September 2020. http://dx.doi.org/10.46850/sofia.9783941627833.
Der volle Inhalt der QuelleSolomon, P. R., Y. Zhao, R. C. Buggeln und S. J. Shamroth. Feasibility study for an advanced coal fired heat exchanger/gas turbine topping cycle for a high efficiency power plant. Technical report, April 1, 1993--June 30, 1993. Office of Scientific and Technical Information (OSTI), August 1993. http://dx.doi.org/10.2172/10143778.
Der volle Inhalt der QuelleSolomon, P. R., Y. Zhao, R. C. Buggeln und S. J. Shamroth. Feasibility study for an advanced coal fired heat exchanger/gas turbine topping cycle for a high efficiency power plant. Technical report, January 1, 1993--March 31, 1993. Office of Scientific and Technical Information (OSTI), April 1993. http://dx.doi.org/10.2172/10143781.
Der volle Inhalt der QuelleSolomon, P. R., Yuxin Zhao und D. S. Pines. Feasibility study for an advanced coal fired heat exchanger/gas turbine topping cycle for a high efficiency power plant. Technical report, September 10, 1992--December 31, 1992. Office of Scientific and Technical Information (OSTI), Februar 1993. http://dx.doi.org/10.2172/10133353.
Der volle Inhalt der QuelleCastellano, Mike J., Abraham G. Shaviv, Raphael Linker und Matt Liebman. Improving nitrogen availability indicators by emphasizing correlations between gross nitrogen mineralization and the quality and quantity of labile soil organic matter fractions. United States Department of Agriculture, Januar 2012. http://dx.doi.org/10.32747/2012.7597926.bard.
Der volle Inhalt der Quelle