Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Plant autophagy“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Plant autophagy" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Plant autophagy"
Luo, Shuwei, Xifeng Li, Yan Zhang, Yunting Fu, Baofang Fan, Cheng Zhu und Zhixiang Chen. „Cargo Recognition and Function of Selective Autophagy Receptors in Plants“. International Journal of Molecular Sciences 22, Nr. 3 (20.01.2021): 1013. http://dx.doi.org/10.3390/ijms22031013.
Der volle Inhalt der QuelleZeng, Yonglun, Baiying Li, Changyang Ji, Lei Feng, Fangfang Niu, Cesi Deng, Shuai Chen et al. „A unique AtSar1D-AtRabD2a nexus modulates autophagosome biogenesis in Arabidopsis thaliana“. Proceedings of the National Academy of Sciences 118, Nr. 17 (20.04.2021): e2021293118. http://dx.doi.org/10.1073/pnas.2021293118.
Der volle Inhalt der QuelleGao, Caiji, Xiaohong Zhuang, Yong Cui, Xi Fu, Yilin He, Qiong Zhao, Yonglun Zeng, Jinbo Shen, Ming Luo und Liwen Jiang. „Dual roles of an Arabidopsis ESCRT component FREE1 in regulating vacuolar protein transport and autophagic degradation“. Proceedings of the National Academy of Sciences 112, Nr. 6 (26.01.2015): 1886–91. http://dx.doi.org/10.1073/pnas.1421271112.
Der volle Inhalt der QuelleYang, Meng, Asigul Ismayil und Yule Liu. „Autophagy in Plant-Virus Interactions“. Annual Review of Virology 7, Nr. 1 (29.09.2020): 403–19. http://dx.doi.org/10.1146/annurev-virology-010220-054709.
Der volle Inhalt der QuelleZhang, Tianrui, Zhidan Xiao, Chuanliang Liu, Chao Yang, Jiayi Li, Hongbo Li, Caiji Gao und Wenjin Shen. „Autophagy Mediates the Degradation of Plant ESCRT Component FREE1 in Response to Iron Deficiency“. International Journal of Molecular Sciences 22, Nr. 16 (16.08.2021): 8779. http://dx.doi.org/10.3390/ijms22168779.
Der volle Inhalt der QuelleRan, Jie, Sayed M. Hashimi und Jian-Zhong Liu. „Emerging Roles of the Selective Autophagy in Plant Immunity and Stress Tolerance“. International Journal of Molecular Sciences 21, Nr. 17 (31.08.2020): 6321. http://dx.doi.org/10.3390/ijms21176321.
Der volle Inhalt der QuelleHafrén, Anders, Jean-Luc Macia, Andrew J. Love, Joel J. Milner, Martin Drucker und Daniel Hofius. „Selective autophagy limits cauliflower mosaic virus infection by NBR1-mediated targeting of viral capsid protein and particles“. Proceedings of the National Academy of Sciences 114, Nr. 10 (21.02.2017): E2026—E2035. http://dx.doi.org/10.1073/pnas.1610687114.
Der volle Inhalt der QuelleAcheampong, Atiako Kwame, Carly Shanks, Chia-Yi Cheng, G. Eric Schaller, Yasin Dagdas und Joseph J. Kieber. „EXO70D isoforms mediate selective autophagic degradation of type-A ARR proteins to regulate cytokinin sensitivity“. Proceedings of the National Academy of Sciences 117, Nr. 43 (13.10.2020): 27034–43. http://dx.doi.org/10.1073/pnas.2013161117.
Der volle Inhalt der QuelleBao, Yan, Wei-Meng Song, Peipei Wang, Xiang Yu, Bei Li, Chunmei Jiang, Shin-Han Shiu, Hongxia Zhang und Diane C. Bassham. „COST1 regulates autophagy to control plant drought tolerance“. Proceedings of the National Academy of Sciences 117, Nr. 13 (13.03.2020): 7482–93. http://dx.doi.org/10.1073/pnas.1918539117.
Der volle Inhalt der QuelleZenkov, N. K., A. V. Chechushkov, P. M. Kozhin, N. V. Kandalintseva, G. G. Martinovich und E. B. Menshchikova. „Plant phenols and autophagy“. Biochemistry (Moscow) 81, Nr. 4 (April 2016): 297–314. http://dx.doi.org/10.1134/s0006297916040015.
Der volle Inhalt der QuelleDissertationen zum Thema "Plant autophagy"
Ballhaus, Florentine. „Investigating plant autophagy with new chemical modulators“. Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-428075.
Der volle Inhalt der QuelleGomez, Rodrigo Enrique. „Unravelling the contribution of lipids in plant autophagy : Identification and functional characterization of lipids implicated in the autophagic process in Arabidopsis“. Thesis, Bordeaux, 2021. http://www.theses.fr/2021BORD0103.
Der volle Inhalt der QuellePlants, being sessile organisms, are frequently confronted to a plethora of environmental stresses and harsh conditions. Enduring these conditions can lead to the accumulation of protein aggregates or organelles that become dysfunctional. To withstand these conditions, plants have evolved sophisticated adaptation mechanisms for the recycling of intracellular components. These mechanisms are essential for the metabolic transitions required for efficient nutrient use, as well as proper disposal of protein aggregates or damaged organelles. One of these mechanisms is autophagy, an intracellular degradation pathway that employs specialized double membrane vesicles that encapsulate cytosolic material and delivers it to the vacuole for degradation. Autophagy relies on the formation of these specialized vesicles, called autophagosomes (APs). APs are unique vesicles in the endomembrane system, first because they are made of a double lipid bilayer, and second because they do not but from a pre-existing compartment. AP biogenesis is a multistep process implicating a core machinery (ATG proteins) that mediate the de novo formation of an initial membrane; then, by the addition of lipids, this membrane expands into a cup-shaped structure with highly curved edges to engulf autophagic cargo. Upon completion, the rims of the structure seal and form a mature AP that traffics to the vacuole, where its outer membrane fuses with the tonoplast releasingthe inner membrane and cargo inside the vacuole. Thus, AP biogenesis relies on numerous membrane remodeling events, first to initiate the initial membrane, then to maintain the highly curved shape of the structure while ensuring its expansion, and finally to seal the mature structures and its subsequent fusion to the vacuole. Lipids, thanks to their physicochemical properties define important membrane features such as its, fluidity, curvature and electrostatics. Hence, evidence showing the crucial role of lipids in autophagy has emerged in the recent years. In plants however, little is known about the lipid composition of autophagic membranes and thus, about the functional contribution of lipids in plant autophagy. My PhD thesis consisted on identifying crucial lipids for plant autophagy with an aim to characterize their function in the process. By performing a lipid-related enzymes inhibitor screen in which we assayed the impact of inhibiting the synthesis of specific lipids on autophagy, we identified different lipid candidates important for plant autophagy. Notably, we identified the phosphatydil-inositol-4-phosphate (PI4P) as being critical for the formation of APs. In the absence of PI4P, AP formation is stalled at a very early stage resulting in a block in the process. Furthermore, we have obtained valuable insights to better understand the AP formation. In plants, particularly, our results suggest that the plasma membrane (PM) plays important roles in the formation of these structures. Taken together, our results confirmed that lipids are more than just building blocks constituting the autophagic membranes; rather, they seem to play distinct and specific roles in the pathway. Finally, this thesis highlights how lipids are key actors for the autophagic process and thus for plants adaptations to adverse and stressful environmental conditions
Testi, Serena. „L’effecteur Avh195 de Phytophthora parasitica : antagoniste de l’autophagie chez l’hôte et promoteur du processus infectieux“. Thesis, Université Côte d'Azur (ComUE), 2018. http://www.theses.fr/2018AZUR4087/document.
Der volle Inhalt der QuelleThe plant pathogen Phytophthora parasitica is an oomycete with devastating impact on both agriculture and natural ecosystems. As a hemi-biotrophic organism it infects the roots of plants first establishing an intimate contact with host cells (biotrophy) before killing them (necrotrophy) and completing its infection cycle. To control these processes, oomycetes secrete effector proteins, which are internalized in plant cells by a translocation motif (called RxLR-EER) to manipulate the physiology and the immune responses of the host. Studies of the molecular exchanges between Phytophthora parasitica and the plant that were conducted by the hosting laboratory led to the identification of an RxLR effector, designed to as Avh195. The amino acid sequence of the effector is characterized by the presence of five AIMs (ATG8 interacting motifs), that indicate a potential interaction with the autophagic core protein, ATG8. Avh195 colocalizes with the membrane-bound fraction of ATG8, and a yeast two-hybrid system, which allows to determine interactions between membrane proteins, confirmed a non-selective interaction between Avh195 and several ATG8 isoforms. The characterization of Avh195-dependent autophagy perturbation was carried out in the unicellular alga Chlamydomonas reinhardtii after generation of transgenic lines overexpressing the effector. Analyses by flow cytometry revealed that Avh195 does not modify the physiology and fitness of the alga, both under normal growth conditions and during rapamycin-induced autophagy. Transmission electron microscopy of cells revealed that the effector provokes a delay in the autophagic flux, manifested as a reduced coalescence and clearance of autophagic vacuoles and a strong accumulation of starch in chloroplasts. However, this phenotype was transient and only slightly related to modifications in the transcriptional regulation of the autophagic machinery. The analysis of effector function in planta showed that Avh195 delays the development of hypersensitive cell death, which is triggered by an oomycete elicitor. This cell death-delaying activity is dependent on three out of five AIMs, further consolidating the importance of the Avh195-ATG8 interaction for the function of the effector. The stable overexpression of Avh195 in A. thaliana allowed to determine that the effector does not impair plant defense responses, but overall promotes the development of the pathogen, accelerating the switch from biotrophy to necrotrophy during infection. To our knowledge, the work presented in this thesis represents the first evidence for an oomycete effector to possess a transitory activity, which targets in a non-selective manner the protein ATG8 in different organisms from the green lineage to slow down autophagic flux, thus promoting the hemibiotrophic life style of a pathogen
Fancy, Nurun Nahar. „Role of S-nitrosylation in plant salt stress“. Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/29509.
Der volle Inhalt der QuelleSumita, Takuya. „Studies on intracellular protein degradation pathways in plant fungal pathogens“. Kyoto University, 2019. http://hdl.handle.net/2433/242706.
Der volle Inhalt der Quelle0048
新制・課程博士
博士(農学)
甲第21829号
農博第2342号
新制||農||1068(附属図書館)
学位論文||H31||N5201(農学部図書室)
京都大学大学院農学研究科地域環境科学専攻
(主査)教授 田中 千尋, 教授 本田 与一, 准教授 刑部 正博
学位規則第4条第1項該当
Puleston, Daniel. „The role of autophagy in CD8plus T cell immunity“. Thesis, University of Oxford, 2015. http://ora.ox.ac.uk/objects/uuid:6cc5b853-4899-4de2-8924-71f7ee0659a1.
Der volle Inhalt der QuelleZhang, Zhu. „Exploration of the anticancer mechanisms of novel chemotherapeutic adjuvants involving autophagy and immune system reprogramming in the treatment of pancreatic cancer“. HKBU Institutional Repository, 2020. https://repository.hkbu.edu.hk/etd_oa/755.
Der volle Inhalt der QuelleMilani, Manuela. „Cell stress response and hypoxia in breast cancer“. Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:74d3bf91-9888-4e9e-b5e1-7d5d2d476174.
Der volle Inhalt der QuelleEscamez, Sacha. „Xylem cells cooperate in the control of lignification and cell death during plant vascular development“. Doctoral thesis, Umeå universitet, Institutionen för fysiologisk botanik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-115787.
Der volle Inhalt der QuelleZayer, Adam. „Cellular models for characterisation of MINA53, a 2-oxoglutarate-dependent dioxygenase“. Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:ebd1dfcd-0c8e-4c87-9644-8ddfd9208456.
Der volle Inhalt der QuelleBücher zum Thema "Plant autophagy"
Bassham, Diane C., und Jose L. Crespo, Hrsg. Autophagy in plants and algae. Frontiers Media SA, 2015. http://dx.doi.org/10.3389/978-2-88919-477-3.
Der volle Inhalt der QuelleRamos, Jason. Intermittent Fasting Diabetes: Prevent and Reverse Diabetes and Learn How Autophagy and Keto Diet Can Help You Lose Weight. a Complete 101 Guide for Women and Men with Easy Meal Plans. Independently Published, 2019.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Plant autophagy"
Chen, Liang, Faqiang Li und Shi Xiao. „Analysis of Plant Autophagy“. In Methods in Molecular Biology, 267–80. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7262-3_24.
Der volle Inhalt der QuelleZeng, Hong-Yun, Ping Zheng, Ling-Yan Wang, He-Nan Bao, Sunil Kumar Sahu und Nan Yao. „Autophagy in Plant Immunity“. In Advances in Experimental Medicine and Biology, 23–41. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0606-2_3.
Der volle Inhalt der QuelleRodríguez, Milagros Collados, Katarzyna Zientara-Rytter und Agnieszka Sirko. „Role of Autophagy in Plant Nutrient Deficiency“. In Plant Ecophysiology, 171–203. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10635-9_7.
Der volle Inhalt der QuelleCui, Xuefei, Jing Zheng, Jinxin Zheng und Qingqiu Gong. „Study of Autophagy in Plant Senescence“. In Methods in Molecular Biology, 299–306. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7672-0_23.
Der volle Inhalt der QuelleFloyd, Brice E., Yunting Pu, Junmarie Soto-Burgos und Diane C. Bassham. „To Live or Die: Autophagy in Plants“. In Plant Programmed Cell Death, 269–300. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21033-9_11.
Der volle Inhalt der QuelleSeay, Montrell, Andrew P. Hayward, Jeffrey Tsao und S. P. Dinesh-Kumar. „Something Old, Something New: Plant Innate Immunity and Autophagy“. In Current Topics in Microbiology and Immunology, 287–306. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00302-8_14.
Der volle Inhalt der QuelleHusen, Azamal. „Cross Talk Between Autophagy and Hormones for Abiotic Stress Tolerance in Plants“. In Plant Performance Under Environmental Stress, 1–15. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78521-5_1.
Der volle Inhalt der QuellePapini, Alessio. „Investigation of Morphological Features of Autophagy During Plant Programmed Cell Death“. In Methods in Molecular Biology, 9–19. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7668-3_2.
Der volle Inhalt der QuelleAshrafizadeh, Milad, Shima Tavakol, Reza Mohammadinejad, Zahra Ahmadi, Habib Yaribeygi, Tannaz Jamialahmadi, Thomas P. Johnston und Amirhossein Sahebkar. „Paving the Road Toward Exploiting the Therapeutic Effects of Ginsenosides: An Emphasis on Autophagy and Endoplasmic Reticulum Stress“. In Pharmacological Properties of Plant-Derived Natural Products and Implications for Human Health, 137–60. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64872-5_12.
Der volle Inhalt der QuelleLaureano-Marín, Ana M., Inmaculada Moreno, Ángeles Aroca, Irene García, Luis C. Romero und Cecilia Gotor. „Regulation of Autophagy by Hydrogen Sulfide“. In Gasotransmitters in Plants, 53–75. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40713-5_3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Plant autophagy"
Peththa Thanthrige, Nipuni. „AtBAG4 interacts with NBR1 to promote chaperone-mediated autophagy and stress tolerance“. In ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1052976.
Der volle Inhalt der QuelleAkintayo, Oluwatoyosi F. „The Arabidopsis plasma membrane PSS1 protein conferring nhost immunity contributes to defense through autophagy following infection“. In ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1053055.
Der volle Inhalt der QuelleYu, PEIFENG. „Dynamic Activity Regulation of the Ubiquitin-26S Proteasome System and Autophagy is Essential for Proper Seed Development“. In ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1049094.
Der volle Inhalt der QuelleRabadanova, K. K., E. V. Tyutereva, K. S. Dobryakova und O. V. Voitsekhovskaja. „The potassium role in the autophagy induction in salt stress in Arabidopsis thaliana“. In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-370.
Der volle Inhalt der QuelleMurtuzova, A. V., K. K. Rabadanova, K. S. Dobryakova, E. V. Tyutereva und O. V. Voitsekhovskaja. „The role of potassium in the regulation of constitutive and stress-induced autophagy in plants“. In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future. Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-299.
Der volle Inhalt der QuelleApollonov, V. I. „Regulation of autophagy, cell death and growth under salt stress in barley varieties with different salt tolerance“. In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-47.
Der volle Inhalt der QuelleMinibayeva, F. V. „OXIDATIVE STRESS AND AUTOPHAGY IN PLANT CELLS: THE ROLE OF MITOCHONDRIA“. In The Second All-Russian Scientific Conference with international participation "Regulation Mechanisms of Eukariotic Cell Organelle Functions". SIPPB SB RAS, 2018. http://dx.doi.org/10.31255/978-5-94797-318-1-65-65.
Der volle Inhalt der QuelleZharova, D. A., A. I. Evkaykina, O. N. Boldina, O. V. Voitsekhovskaja und E. V. Tyutereva. „Study of the role of autophagy in stress resistance and activation of astaxanthin biosynthesis in the microalga Haematococcus pluvialis“. In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-169.
Der volle Inhalt der QuelleSasanuma, I., N. Suzuki und K. Saito. „Rose essential oils stimulate neural differentiation and autophagy in stem cells“. In 67th International Congress and Annual Meeting of the Society for Medicinal Plant and Natural Product Research (GA) in cooperation with the French Society of Pharmacognosy AFERP. © Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-3400081.
Der volle Inhalt der QuelleWang, Xin-Ru. „The roles of autophagy in the interactions of a whitefly with a plant virus it transmits“. In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.112405.
Der volle Inhalt der Quelle