Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Plans isoclins“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Plans isoclins" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Plans isoclins"
Et-Taoui, Boumediene. „Quaternionic equiangular lines“. Advances in Geometry 20, Nr. 2 (28.04.2020): 273–84. http://dx.doi.org/10.1515/advgeom-2019-0021.
Der volle Inhalt der QuelleYang, Jian Hui, Rong Ling Sun, Zheng Hao Yang, Xin Yang Lin und Hai Cheng Niu. „Constitutive Relations of Concrete under Plane Stresses Based on Generalized Octahedral Theory“. Applied Mechanics and Materials 71-78 (Juli 2011): 342–52. http://dx.doi.org/10.4028/www.scientific.net/amm.71-78.342.
Der volle Inhalt der QuelleEt-Taoui, B. „Equi-isoclinic planes of Euclidean spaces“. Indagationes Mathematicae 17, Nr. 2 (Juni 2006): 205–19. http://dx.doi.org/10.1016/s0019-3577(06)80016-9.
Der volle Inhalt der QuellePinit, Pichet, Tobita Susumu und Eisaku Umezaki. „Determination of Principal-Stress Directions by Three-Step Color Phase Shifting Technique“. Key Engineering Materials 321-323 (Oktober 2006): 1284–87. http://dx.doi.org/10.4028/www.scientific.net/kem.321-323.1284.
Der volle Inhalt der QuelleAghajani, A., und A. Moradifam. „Intersection with the vertical isocline in the Liénard plane“. Nonlinear Analysis: Theory, Methods & Applications 68, Nr. 11 (Juni 2008): 3475–84. http://dx.doi.org/10.1016/j.na.2007.03.040.
Der volle Inhalt der QuelleSRIVASTAVA, DEEPAK C. „Geometrical similarity in successively developed folds and sheath folds in the basement rocks of the northwestern Indian Shield“. Geological Magazine 148, Nr. 1 (20.08.2010): 171–82. http://dx.doi.org/10.1017/s0016756810000610.
Der volle Inhalt der QuelleAghajani, Asadollah, Mohsen Mirafzal und Donald O’Regan. „Conditions for approaching the origin without intersecting the x-axis in the Liénard plane“. Filomat 31, Nr. 12 (2017): 3761–70. http://dx.doi.org/10.2298/fil1712761a.
Der volle Inhalt der QuelleHara, Tadayuki, und Jitsuro Sugie. „When all trajectories in the Li�nard plane cross the vertical isocline?“ Nonlinear Differential Equations and Applications NoDEA 2, Nr. 4 (Dezember 1995): 527–51. http://dx.doi.org/10.1007/bf01210622.
Der volle Inhalt der QuelleBlokhuis, Aart, Ulrich Brehm und Boumediene Et-Taoui. „Complex conference matrices and equi-isoclinic planes in Euclidean spaces“. Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry 59, Nr. 3 (19.12.2017): 491–500. http://dx.doi.org/10.1007/s13366-017-0374-2.
Der volle Inhalt der QuelleAghajani, Asadollah, und Amir Moradifam. „Some sufficient conditions for the intersection with the vertical isocline in the Liénard plane“. Applied Mathematics Letters 19, Nr. 5 (Mai 2006): 491–97. http://dx.doi.org/10.1016/j.aml.2005.07.005.
Der volle Inhalt der QuelleDissertationen zum Thema "Plans isoclins"
Lehbab, Imène. „Problèmes métriques dans les espaces de Grassmann“. Electronic Thesis or Diss., Mulhouse, 2023. http://www.theses.fr/2023MULH6508.
Der volle Inhalt der QuelleThis work contributes to the field of metric geometry of the complex projective plane CP2 and the real Grassmannian manifold of the planes in R6. More specifically, we study all p-tuples, p ≥ 3, of equiangular lines in C3 or equidistant points in CP2, and p-tuples of equi-isoclinic planes in R6. Knowing that 9 is the maximum number of equiangular lines that can be constructed in C3, we develop a method to obtain all p-tuples of equiangular lines for all p ϵ [3,9]. In particular, we construct in C3 five congruence classes of quadruples of equiangular lines, one of which depends on a real parameter ɣ, which we extend to an infinite family of sextuples of equiangular lines depending on the same real parameter ɣ. In addition, we give the angles for which our sextuples extend beyond and up to 9-tuples. We know that there exists a p-tuple, p ≥ 3, of equi-isoclinic planes generating Rr, r ≥ 4, with parameter c, 0< c <1, if and only if there exists a square symmetric matrix, called Seidel matrix, of p × p square blocks of order 2, whose diagonal blocks are all zero and the others are orthogonal matrices in O(2) and whose smallest eigenvalue is equal to - 1/c and has multiplicity 2p-r. In this thesis, we investigate the case r=6 and we also show that we can explicitly determine the spectrum of all Seidel matrices of order 2p, p ≥ 3 whose off-diagonal blocks are in {R0, S0} where R0 and S0 are respectively the zero-angle rotation and the zero-angle symmetry. We thus show an unexpected link between some p-tuples of equi-isoclinic planes in Rr and simple graphs of order p
Buchteile zum Thema "Plans isoclins"
„The Isocline Approach to Resource Competition“. In Plant Strategies and the Dynamics and Structure of Plant Communities. (MPB-26), Volume 26, 18–51. Princeton University Press, 2020. http://dx.doi.org/10.2307/j.ctvx5w9ws.5.
Der volle Inhalt der Quelle„2. The Isocline Approach to Resource Competition“. In Plant Strategies and the Dynamics and Structure of Plant Communities. (MPB-26), Volume 26, 18–51. Princeton University Press, 1988. http://dx.doi.org/10.1515/9780691209593-003.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Plans isoclins"
Stjepan Bogdan. „Fuzzy Controller Design Based on the Phase Plane Isoclines“. In 2006 14th Mediterranean Conference on Control and Automation. IEEE, 2006. http://dx.doi.org/10.1109/med.2006.235699.
Der volle Inhalt der QuelleBogdan, Stjepan, und Zdenko Kovacic. „Fuzzy Controller Design Based on the Phase Plane Isoclines“. In 2006 14th Mediterranean Conference on Control and Automation. IEEE, 2006. http://dx.doi.org/10.1109/med.2006.328846.
Der volle Inhalt der QuelleNoufal, Abdelwahab, Safeya Alkatheeri, Khalid Obaid, Abdulla Shehab, Hamda Al Shehhi und Saleh Al Hadarem. „Abu Dhabi Tectonic Evolution: Novel Model Impacting Hydrocarbon Potentiality and Trapping Mechanism“. In ADIPEC. SPE, 2023. http://dx.doi.org/10.2118/216263-ms.
Der volle Inhalt der Quelle