Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Plane-Wave transducer“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Plane-Wave transducer" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Plane-Wave transducer"
Zennaro, Marco, Dan J. O’Boy, Premesh Shehan Lowe und Tat-Hean Gan. „Characterization and Design Improvement of a Thickness-Shear Lead Zirconate Titanate Transducer for Low Frequency Ultrasonic Guided Wave Applications“. Sensors 19, Nr. 8 (18.04.2019): 1848. http://dx.doi.org/10.3390/s19081848.
Der volle Inhalt der QuelleGo, Dooyoung, Jinbum Kang, Ilseob Song und Yangmo Yoo. „Efficient Transmit Delay Calculation in Ultrasound Coherent Plane-Wave Compound Imaging for Curved Array Transducers“. Applied Sciences 9, Nr. 13 (08.07.2019): 2752. http://dx.doi.org/10.3390/app9132752.
Der volle Inhalt der QuelleBerthelot, J.-M., Souda M. Ben und J. L. Robert. „Study of wave attenuation in concrete“. Journal of Materials Research 8, Nr. 9 (September 1993): 2344–53. http://dx.doi.org/10.1557/jmr.1993.2344.
Der volle Inhalt der QuelleTheobald, Pete T., und F. Dar. „AE Sensor Calibration for Out-of-Plane and In-Plane Displacement Sensitivity“. Advanced Materials Research 13-14 (Februar 2006): 91–98. http://dx.doi.org/10.4028/www.scientific.net/amr.13-14.91.
Der volle Inhalt der QuelleLiu, Zhi-Ying, Ping Zhang, Bi-Xing Zhang und Wen Wang. „Multi Spherical Wave Imaging Method Based on Ultrasonic Array“. Sensors 22, Nr. 18 (08.09.2022): 6800. http://dx.doi.org/10.3390/s22186800.
Der volle Inhalt der QuelleTang, Yujia, Zhangjian Li, Yaoyao Cui, Chen Yang, Jiabing Lv und Yang Jiao. „Micro Non-Uniform Linear Array (MNULA) for Ultrasound Plane Wave Imaging“. Sensors 21, Nr. 2 (18.01.2021): 640. http://dx.doi.org/10.3390/s21020640.
Der volle Inhalt der QuelleCowes, Diego A., Juan I. Mieza und Martín P. Gómez. „Polyvinylidene fluoride transducer shape optimization for the characterization of anisotropic materials“. Journal of the Acoustical Society of America 156, Nr. 6 (01.12.2024): 3943–53. https://doi.org/10.1121/10.0034601.
Der volle Inhalt der QuelleAnnenkov, Alexander Yu, Sergey V. Gerus und Edwin H. Lock. „Superdirected beam of the backward volume spin wave“. EPJ Web of Conferences 185 (2018): 02006. http://dx.doi.org/10.1051/epjconf/201818502006.
Der volle Inhalt der QuelleHarris, John G. „The Wavefield Radiated Into an Elastic Half-Space by a Transducer of Large Aperture“. Journal of Applied Mechanics 55, Nr. 2 (01.06.1988): 398–404. http://dx.doi.org/10.1115/1.3173689.
Der volle Inhalt der QuelleWei, Yanfei, Xin Yang, Yukai Chen, Zhihe Zhang und Haobin Zheng. „Modeling of High-Power Tonpilz Terfenol-D Transducer Using Complex Material Parameters“. Sensors 22, Nr. 10 (16.05.2022): 3781. http://dx.doi.org/10.3390/s22103781.
Der volle Inhalt der QuelleDissertationen zum Thema "Plane-Wave transducer"
Scott, Leigh-Ann. „Plane wave expansion analysis of lossy composite transducers incorporating anisotropic polymers“. Thesis, University of Strathclyde, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.444097.
Der volle Inhalt der QuelleManoochehrnia, Pooyan. „Characterisatiοn οf viscοelastic films οn substrate by acοustic micrοscοpy. Direct and inverse prοblems“. Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMLH38.
Der volle Inhalt der QuelleIn the framework of this PhD thesis, the characterisation of the thick and thin films deposited on asubstrate has been done using acoustic microscopy via direct and inverse problem-solving algorithms.Namely the Strohm’s method is used for direct problem-solving while a variety of mathematical modelsincluding Debye series model (DSM), transmission line model (TLM) and spectral method using ratiobetween multiple reflections model (MRM) have been used to solve inverse-problem. A specificapplication of acoustic microscopy has been used consisting of mounting the plane-wave high frequency(50 MHz and 200MHz) transducers instead of use of the traditional focus transducers used for acousticimaging as well as using full-wave A-scan which could be well extended to bulk analysis of consecutivescans. Models have been validated experimentally by a thick film made of epoxy-resin with thicknessof about 100μm and a thin film made of polish of about 8μm. The characterised parameters includemechanical parameters (e.g. density and thickness) as well as viscoelastic parameters (e.g. acousticlongitudinal velocity and acoustic attenuation) and occasionally transducer phase-shift
Warriner, Renee. „Development of Methods for Retrospective Ultrasound Transmit Focusing“. Thesis, 2012. http://hdl.handle.net/1807/34958.
Der volle Inhalt der QuelleBücher zum Thema "Plane-Wave transducer"
Hansen, Thorkild, und Arthur D. Yaghjian. Plane-Wave Theory of Time-Domain Fields: Near-Field Scanning Applications (IEEE Press Series on Electromagnetic Wave Theory). Wiley-IEEE Press, 1999.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Plane-Wave transducer"
Schiffner, Martin F., und Georg Schmitz. „Plane Wave Pulse-Echo Ultrasound Diffraction Tomography with a Fixed Linear Transducer Array“. In Acoustical Imaging, 19–30. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-2619-2_3.
Der volle Inhalt der QuelleCobbold, Richard S. C. „Scattering of Ultrasound“. In Foundations of Biomedical Ultrasound, 268–328. Oxford University PressNew York, NY, 2006. http://dx.doi.org/10.1093/oso/9780195168310.003.0005.
Der volle Inhalt der QuelleNewnham, Robert E. „Acoustic waves II“. In Properties of Materials. Oxford University Press, 2004. http://dx.doi.org/10.1093/oso/9780198520757.003.0026.
Der volle Inhalt der QuelleKramer, S. M., D. A. Hutchins und H. D. Mair. „USE OF PLANE AND EDGE WAVE COMPONENTS TO CHARACTERIZE PVDF TRANSDUCERS“. In Ultrasonics International 87, 838–43. Elsevier, 1987. http://dx.doi.org/10.1016/b978-0-408-02348-1.50144-x.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Plane-Wave transducer"
Alomari, Zainab, Sevan Harput, Safeer Hyder und Steven Freear. „The Effect of the transducer parameters on spatial resolution in Plane-Wave imaging“. In 2015 IEEE International Ultrasonics Symposium (IUS). IEEE, 2015. http://dx.doi.org/10.1109/ultsym.2015.0547.
Der volle Inhalt der QuelleNguyen, Man M., Sheng-Wen Huang, Shiwei Zhou, Chanzhona Hu, Nik Ledoux, Bernard Savord, Vijay Shamdasani und Hua Xie. „Real-Time X-Plane Shear Wave Elastography Feasibility on Philips 2D xMatrix Transducer“. In 2018 IEEE International Ultrasonics Symposium (IUS). IEEE, 2018. http://dx.doi.org/10.1109/ultsym.2018.8580080.
Der volle Inhalt der QuelleГерус, Sergey Gerus, Локк und Edvin Lokk. „Diffraction patterns of the backward spin wave exited in ferrite film by linear transducer“. In XXIV International Conference. Москва: Infra-m, 2016. http://dx.doi.org/10.12737/23115.
Der volle Inhalt der QuelleГерус, Sergey Gerus, Локк, Edvin Lokk, Анненков und A. Annenkov. „Diffraction patterns and angular width of the surface spin wave beams exited in ferrite film by linear transducer“. In XXIV International Conference. Москва: Infra-m, 2016. http://dx.doi.org/10.12737/23117.
Der volle Inhalt der QuelleГерус, Sergey Gerus, Локк, Edvin Lokk, Анненков und A. Annenkov. „Comparison of a diffraction pattern of the surface spin wave beam with distribution of its magnetic potential in the plane of ferrite film“. In XXIV International Conference. Москва: Infra-m, 2016. http://dx.doi.org/10.12737/23116.
Der volle Inhalt der QuelleSadeghpour, Sina, Rui Amendoeira und Michael Kraft. „Ultrasound Imaging With a 128 Channels Piezoelectric Micromachined Ultrasound Transducer (pMUT): Single-Line-Transmission vs. Plane-Wave“. In 2023 IEEE International Ultrasonics Symposium (IUS). IEEE, 2023. http://dx.doi.org/10.1109/ius51837.2023.10306475.
Der volle Inhalt der QuelleZhuang, Linqi, Adarsh Chaurasia und Ali Najafi. „Impact Damage Evaluations in a Composite Laminate Using Guided Wave-Based Simulation“. In ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-95057.
Der volle Inhalt der QuelleROUT, SURAJ KUMAR, und SANTOSH KAPURIA. „LAMB WAVE ACTUATION AND PROPAGATION USING FLEXOELECTRIC TRANSDUCERS“. In Structural Health Monitoring 2023. Destech Publications, Inc., 2023. http://dx.doi.org/10.12783/shm2023/36848.
Der volle Inhalt der QuelleSilva, Glauber T., und Mostafa Fatemi. „On the Calculation of Radiation Force on Spheres Due to Arbitrary Spatially Distributed Acoustic Beams“. In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-85660.
Der volle Inhalt der QuelleWojcik, Gregory L., John C. Mould und Laura M. Carcione. „Combined Transducer and Nonlinear Tissue Propagation Simulations“. In ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-0216.
Der volle Inhalt der Quelle