Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Planar Shear“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Planar Shear" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Planar Shear"
Birshtein, Tatyana M., und Ekatarina B. Zhulina. „Shear of a planar polyelectrolyte brush“. Die Makromolekulare Chemie, Theory and Simulations 1, Nr. 4 (Juni 1992): 193–204. http://dx.doi.org/10.1002/mats.1992.040010401.
Der volle Inhalt der QuelleHooshyar, Soroush, und Natalie Germann. „Shear Banding in 4:1 Planar Contraction“. Polymers 11, Nr. 3 (04.03.2019): 417. http://dx.doi.org/10.3390/polym11030417.
Der volle Inhalt der QuelleCraig, I. J. D., und A. N. McClymont. „Shear Wave Dissipation in Planar MagneticX‐Points“. Astrophysical Journal 481, Nr. 2 (Juni 1997): 996–1003. http://dx.doi.org/10.1086/304082.
Der volle Inhalt der QuelleGibson, J. F., und E. Brand. „Spanwise-localized solutions of planar shear flows“. Journal of Fluid Mechanics 745 (17.03.2014): 25–61. http://dx.doi.org/10.1017/jfm.2014.89.
Der volle Inhalt der QuelleFoss, J. F. „Review vorticity considerations and planar shear layers“. Experimental Thermal and Fluid Science 8, Nr. 3 (April 1994): 260–70. http://dx.doi.org/10.1016/0894-1777(94)90054-x.
Der volle Inhalt der QuelleZhang, Hanlei, Hongchao Kou, Xiaolei Li, Bin Tang und Jinshan Li. „An Atomic Study of Substructures Formed by Shear Transformation in Castγ-TiAl“. Advances in Materials Science and Engineering 2015 (2015): 1–6. http://dx.doi.org/10.1155/2015/675963.
Der volle Inhalt der QuelleARVIDSSON, K. „NON-PLANAR COUPLED SHEAR WALLS IN MULTISTOREY BUILDINGS.“ Proceedings of the Institution of Civil Engineers - Structures and Buildings 122, Nr. 3 (August 1997): 326–33. http://dx.doi.org/10.1680/istbu.1997.29803.
Der volle Inhalt der QuelleGeertsema, A. J. „The shear strength of planar joints in mudstone“. International Journal of Rock Mechanics and Mining Sciences 39, Nr. 8 (Dezember 2002): 1045–49. http://dx.doi.org/10.1016/s1365-1609(02)00100-4.
Der volle Inhalt der QuelleDERFEL, GRZEGORZ, und DARIUSZ KRZYZANSKI. „Shear flow induced deformations of planar cholesteric layers“. Liquid Crystals 22, Nr. 4 (April 1997): 463–68. http://dx.doi.org/10.1080/026782997209180.
Der volle Inhalt der QuelleLuongo, A., G. Rega und F. Vestroni. „On Nonlinear Dynamics of Planar Shear Indeformable Beams“. Journal of Applied Mechanics 53, Nr. 3 (01.09.1986): 619–24. http://dx.doi.org/10.1115/1.3171821.
Der volle Inhalt der QuelleDissertationen zum Thema "Planar Shear"
Lucas, Davidson Glenn. „High Frequency Direct Excitation of Small-Scale Motions in Planar Shear Flows“. Thesis, Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/10579.
Der volle Inhalt der QuelleFrascoli, Federico. „Chaotic and rheological properties of liquids under planar shear and elongational flows“. Swinburne Research Bank, 2007. http://hdl.handle.net/1959.3/22416.
Der volle Inhalt der QuelleDissertation submitted in fulfilment of requirements for the degree Doctor of Philosophy, Centre for Molecular Simulation, Faculty of Information and Communication Technologies, Swinburne University of Technology, 2007. Typescript. Includes bibliographical references (p. 151-161).
Rara, Angela Dominique Sarmiento. „Rolling Shear Strength and Modulus for Various Southeastern US Wood Species using the Two-Plate Shear Test“. Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/104017.
Der volle Inhalt der QuelleMaster of Science
Cross-Laminated Timber (CLT) is an engineered wood panel product, similar to plywood, constructed with solid-sawn or structural composite lumber in alternating perpendicular layers. The additions included in the incoming 2021 International Building Code (IBC) has placed an importance in expanding the research related to the mechanical and material properties of CLT. Also, with the increasing demand for softwood lumber and CLT panel production, the demand for the domestic softwood lumber could place a burden and surpass the domestic softwood supply. Rolling shear is a failure type that occurs when the wood fibers in the cross-layers roll over each other because of the shearing forces acting upon a CLT panel. This study used the two-plate shear test to measure the rolling shear properties of various southeastern US wood species: southern pine, yellow-poplar, and soft maple. A secondary study was conducted, using the same two-plate shear test, to measure the rolling shear properties of re-manufactured southern pine for CLT cross-layer application. The soft maple had the greatest average rolling shear strength at 5.93 N/mm2 and southern pine had the lowest average rolling shear strength at 2.51 N/mm2. Using a single factor analysis of variance (ANOVA), the rolling shear strength values from soft maple were significantly greater than yellow-poplar, which was significantly greater than the southern pine. For the rolling shear modulus, the southern pine and soft maple were of equal statistically significant difference, and both were greater statistically significant different compared to the yellow-poplar. The most common failure found from testing was rolling shear.
Papazoglou, Sebastian. „Elucidation of isotropic and anisotropic shear elasticity of in vivo soft tissue using planar magnetic resonance elastography“. Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2010. http://dx.doi.org/10.18452/16136.
Der volle Inhalt der QuelleMagnetic resonance elastography (MRE) is a noninvasive method that allows the determination of in vivo shear elasticity of soft tissues. In this thesis methods for the determination of isotropic and anisotropic shear elasticities from MRE wave data were developed and evaluated. All methods presented in this work are based on planar MRE, i.e. they are based on the measurement of a single displacement component in the image plane. This way measurement time in MRE is greatly reduced. However, this imposes specific requirements on data evaluation in order to determine significant elastic constants. On the basis of planar MRE experiments on tissue mimicking gels, human skeletal muscle and numerical simulations it is demonstrated that correct shear elasticities can be determined, taking into account a small set of experimental boundary conditions as well as the employment of complementary data evaluation strategies. This thesis is particularly focussed on the analysis of noise and image resolution on the determined elastic constants. Moreover, methods for determining anisotropic elasticity and analyzing shear wave scattering effects on MRE wave data are introduced. The investigated influences on wave amplitudes and wave lengths are compared and discussed to develop a simple measurement protocol for the evaluation of in vivo MRE data. All methods employed in this work are summarized in the appendix along with the corresponding computer code, which is available on demand.
Hyensjö, Marko. „Fibre Orientation Modelling Applied to Contracting Flows Related to Papermaking“. Doctoral thesis, KTH, Mekanik, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4762.
Der volle Inhalt der QuelleQC 20100812
Howell, Jaron A. „Distribution of Particle Image Velocimetry (PIV) Errors in a Planar Jet“. DigitalCommons@USU, 2018. https://digitalcommons.usu.edu/etd/7004.
Der volle Inhalt der QuelleVezirov, Tarlan Azad [Verfasser], Sabine [Akademischer Betreuer] Klapp und Michael [Akademischer Betreuer] Zaks. „Non-equilibrium dynamics and feedback control of strongly confined colloidal suspensions in a planar shear flow / Tarlan Azad Vezirov. Gutachter: Sabine Klapp ; Michael Zaks. Betreuer: Sabine Klapp“. Berlin : Technische Universität Berlin, 2015. http://d-nb.info/1075807522/34.
Der volle Inhalt der QuelleHeczko, Martin. „Počítačové modelování hranic dvojčatění ve slitinách s tvarovou pamětí“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-416633.
Der volle Inhalt der QuellePetersen, Spencer Ray. „A System for Foot Joint Kinetics – Integrating Plantar Pressure/Shear with Multisegment Foot Modeling“. BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/8456.
Der volle Inhalt der QuelleHosein, Riad. „An investigation of in-shoe plantar pressures and shear stresses with particular reference to diabetic peripheral neuropathy“. Thesis, King's College London (University of London), 1996. https://kclpure.kcl.ac.uk/portal/en/theses/an-investigation-of-inshoe-plantar-pressures-and-shear-stresses-with-particular-reference-to-diabetic-peripheral-neuropathy(b0ebff48-2d9e-4fb7-8730-4ae42704ad0b).html.
Der volle Inhalt der QuelleBücher zum Thema "Planar Shear"
Hanhijarvi, Antti. Computational optimisation of test specimen for planar shear strength tests of wood based panels. Espoo, Finland: VTT, Technical Research Centre of Finland, 1998.
Den vollen Inhalt der Quelle findenOesterle, R. G. Design provisions for tangential shear in containment walls. Washington, DC: Division of Engineering, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1988.
Den vollen Inhalt der Quelle findenFarrar, C. R. Damping in low-aspect-ratio, reinforced concrete shear walls. Washington, DC: Division of Engineering, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1993.
Den vollen Inhalt der Quelle findenFarrar, C. R. Stiffness of low-aspect-ratio, reinforced concrete shear walls. Washington, DC: Division of Engineering, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1993.
Den vollen Inhalt der Quelle findenFarrar, C. R. Damping in low-aspect-ratio, reinforced concrete shear walls. Washington, DC: Division of Engineering, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1993.
Den vollen Inhalt der Quelle findenFarrar, C. R. Stiffness of low-aspect-ratio, reinforced concrete shear walls. Washington, DC: Division of Engineering, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1993.
Den vollen Inhalt der Quelle findenFarrar, C. R. Damping in low-aspect-ratio, reinforced concrete shear walls. Washington, DC: Division of Engineering, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1993.
Den vollen Inhalt der Quelle findenFarrar, C. R. Experimental assessment of damping in low aspect ratio, reinforced concrete shear wall structure. Washington, DC: Division of Engineering, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1988.
Den vollen Inhalt der Quelle findenSéminaire international sur le séchage et sur la valorisation du karité et de l'aiélé (1999 Ngaoundéré, Cameroon). Séminaire international sur le séchage et sur la valorisation du karité et de l'aiélé: Ngaoundéré, Cameroun, 1-3 décembre 1999. [Yaoundé]: Presses universitaires de Yaoundé, 2000.
Den vollen Inhalt der Quelle findenA planar reacting shear layer system for the study of fluid dynamics-combustion interaction. [Washington, D.C.]: NASA, 1990.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Planar Shear"
Garzó, Vicente, und Andrés Santos. „Planar Couette Flow in a Mixture“. In Kinetic Theory of Gases in Shear Flows, 271–97. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0291-1_6.
Der volle Inhalt der QuelleGarzó, Vicente, und Andrés Santos. „Planar Couette Flow in a Single Gas“. In Kinetic Theory of Gases in Shear Flows, 213–70. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0291-1_5.
Der volle Inhalt der QuelleKosevich, Arnold M., Eugenii S. Syrkin und andre V.Tutov. „Shear Surface Acoustic Waves Localized Near a Planar Defect“. In Acoustical Imaging, 513–17. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4419-8588-0_81.
Der volle Inhalt der QuelleRauch, E. F., und L. Dupuy. „Textural Evolution during Equal Channel Angular Extrusion versus Planar Simple Shear“. In Nanomaterials by Severe Plastic Deformation, 297–302. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527602461.ch5b.
Der volle Inhalt der QuelleDelannay, Laurent, Maxime A. Melchior, Anand K. Kanjarla, Paul Van Houtte und Javier W. Signorelli. „CPFEM Investigation of the Effect of Grain Shape on the Planar Anisotropy and the Shear Banding of Textured Metal Sheets“. In Ceramic Transactions Series, 745–56. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008. http://dx.doi.org/10.1002/9780470444214.ch79.
Der volle Inhalt der QuelleZolnikov, Konstantin P., Dmitrij S. Kryzhevich und Aleksandr V. Korchuganov. „Regularities of Structural Rearrangements in Single- and Bicrystals Near the Contact Zone“. In Springer Tracts in Mechanical Engineering, 301–22. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60124-9_14.
Der volle Inhalt der QuelleGuo, Jinghui, Ali Ersen, Yang Gao, Yu Lin, Latifur Khan und Metin Yavuz. „Prediction of Plantar Shear Stress Distribution by Conditional GAN with Attention Mechanism“. In Medical Image Computing and Computer Assisted Intervention – MICCAI 2020, 770–80. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59713-9_74.
Der volle Inhalt der QuelleKaufmann, Walter. „Behaviour of Beams in Shear“. In Strength and Deformations of Structural Concrete Subjected to In-Plane Shear and Normal Forces, 95–122. Basel: Birkhäuser Basel, 1998. http://dx.doi.org/10.1007/978-3-0348-7612-4_6.
Der volle Inhalt der QuelleNorris, J. E., und J. R. Greenwood. „Review of in situ shear tests on root reinforced soil“. In The Supporting Roots of Trees and Woody Plants: Form, Function and Physiology, 287–94. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-017-3469-1_28.
Der volle Inhalt der QuelleLeckie, F., A. H. Scragg und K. C. Cliffe. „The Effect of Continuous High Shear Stress on Plant Cell Suspension Cultures“. In Progress in Plant Cellular and Molecular Biology, 689–93. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2103-0_103.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Planar Shear"
Mortimer, Bruce J. P., Gary A. Zets, Brian J. Altenbernd und Tharaka Goonetilleke. „Development of a planar shear sensor“. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2016. http://dx.doi.org/10.1109/embc.2016.7591125.
Der volle Inhalt der QuelleLAI, H., und M. RAJU. „CFD validation of subsonic turbulent planar shear layers“. In 29th Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-1773.
Der volle Inhalt der QuellePetel, Oren E., Andrew J. Higgins, Mark Elert, Michael D. Furnish, William W. Anderson, William G. Proud und William T. Butler. „Planar Impact Study of a Shear Thickening Fluid“. In SHOCK COMPRESSION OF CONDENSED MATTER 2009: Proceedings of the American Physical Society Topical Group on Shock Compression of Condensed Matter. AIP, 2009. http://dx.doi.org/10.1063/1.3295189.
Der volle Inhalt der QuelleUrban, William, Shigeya Watanabe und M. Mungal. „Velocity field of the planar shear layer - Compressibility effects“. In 36th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1998. http://dx.doi.org/10.2514/6.1998-697.
Der volle Inhalt der QuelleMeyer, Terence, J. Dutton und Robert Lucht. „Turbulent molecular mixing in fully-developed planar shear flows“. In 39th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-287.
Der volle Inhalt der QuelleKalghatgi, Prasad, Sumanta Acharya, Paul Strykowski und Matt Anderson. „Characteristics of Planar Counter Current Shear Flow in Dump Geometry“. In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-63312.
Der volle Inhalt der QuelleCalhoon, William. „HEAT RELEASE AND COMPRESSIBILITY EFFECTS ON PLANAR SHEAR LAYER DEVELOPMENT“. In 41st Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-1273.
Der volle Inhalt der QuelleBertsch, Rebecca L., Divya Sri Praturi und Sharath S. Girimaji. „Effect of compressibility on inhomogeneous planar shear flows: Stabilizing mechanisms“. In THMT-18. Turbulence Heat and Mass Transfer 9 Proceedings of the Ninth International Symposium On Turbulence Heat and Mass Transfer. Connecticut: Begellhouse, 2018. http://dx.doi.org/10.1615/thmt-18.300.
Der volle Inhalt der QuelleCizelj, Leon, und Igor Simonovski. „Simulated Planar Polycrystalls With Planar and Spatial Random Lattice Orientations“. In ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2008. http://dx.doi.org/10.1115/esda2008-59533.
Der volle Inhalt der QuelleShen, Qing, Fenggan Zhuang, Faming Guan, Qiang Wang und Xiangjiang Yuan. „Numerical Simulation on a Planar Supersonic Free Shear Layer Secondary Instability“. In 3rd AIAA Flow Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-3351.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Planar Shear"
Lovell, Alexis, Garrett Hoch, Christopher Donnelly, Jordan Hodge, Robert Haehnel und Emily Asenath-Smith. Shear and tensile delamination of ice from surfaces : The Ice Adhesion Peel Test (IAPT). Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/41781.
Der volle Inhalt der QuelleConley, A. J. Centrifugal destabilization and restabilization of plane shear flows. Office of Scientific and Technical Information (OSTI), August 1997. http://dx.doi.org/10.2172/522751.
Der volle Inhalt der QuelleGlezer, Ari, und Frank H. Champagne. Real-Time Adaptive Control of Mixing in a Plane Shear Layer. Fort Belvoir, VA: Defense Technical Information Center, Dezember 1993. http://dx.doi.org/10.21236/ada285541.
Der volle Inhalt der QuelleHiller, S. W. Open test assembly (OTA) shear demonstration testing work/test plan. Office of Scientific and Technical Information (OSTI), Juli 1998. http://dx.doi.org/10.2172/345055.
Der volle Inhalt der QuelleBrodsky, N. S. Hydrostatic and shear consolidation tests with permeability measurements on Waste Isolation Pilot Plant crushed salt. Office of Scientific and Technical Information (OSTI), März 1994. http://dx.doi.org/10.2172/10142397.
Der volle Inhalt der QuelleKlamerus, E. W., M. P. Bohn, J. J. Johnson, A. P. Asfura und D. J. Doyle. Assessment of the impact of degraded shear wall stiffnesses on seismic plant risk and seismic design loads. Office of Scientific and Technical Information (OSTI), Februar 1994. http://dx.doi.org/10.2172/10134778.
Der volle Inhalt der QuelleHerrmann, J. M., und J. R. Walton. On the Energy Release Rate for Dynamic Transient Anti-Plane Shear Crack Propagation in a General Linear Viscoelastic Body. Fort Belvoir, VA: Defense Technical Information Center, September 1988. http://dx.doi.org/10.21236/ada202942.
Der volle Inhalt der QuelleElbring, G. J., und S. M. Narbutovskih. Integrated test plan for crosswell compressional and shear wave seismic tomography for site characterization at the VOC Arid Site. Office of Scientific and Technical Information (OSTI), Februar 1994. http://dx.doi.org/10.2172/10126402.
Der volle Inhalt der QuelleSchovanec, L., und J. R. Walton. On the Order of the Stress Singularity for an Anti-Plane Shear Crack at the Interface of Two Bonded Inhomogeneous Elastic Materials. Fort Belvoir, VA: Defense Technical Information Center, November 1986. http://dx.doi.org/10.21236/ada175139.
Der volle Inhalt der QuelleRedpath, Bruce B. Downhole Measurements of Shear- and Compression-Wave Velocities in Boreholes C4993, C4996, C4997 and C4998 at the Waste Treatment Plant DOE Hanford Site. Office of Scientific and Technical Information (OSTI), April 2007. http://dx.doi.org/10.2172/912735.
Der volle Inhalt der Quelle