Auswahl der wissenschaftlichen Literatur zum Thema „Planar cell polarity pathway“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Planar cell polarity pathway" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Planar cell polarity pathway"

1

Harrison, Carl, Hongyu Shao, Helen Strutt und David Strutt. „Molecular mechanisms mediating asymmetric subcellular localisation of the core planar polarity pathway proteins“. Biochemical Society Transactions 48, Nr. 4 (21.08.2020): 1297–308. http://dx.doi.org/10.1042/bst20190404.

Der volle Inhalt der Quelle
Annotation:
Planar polarity refers to cellular polarity in an orthogonal plane to apicobasal polarity, and is seen across scales from molecular distributions of proteins to tissue patterning. In many contexts it is regulated by the evolutionarily conserved ‘core' planar polarity pathway that is essential for normal organismal development. Core planar polarity pathway components form asymmetric intercellular complexes that communicate polarity between neighbouring cells and direct polarised cell behaviours and the formation of polarised structures. The core planar polarity pathway consists of six structurally different proteins. In the fruitfly Drosophila melanogaster, where the pathway is best characterised, an intercellular homodimer of the seven-pass transmembrane protein Flamingo interacts on one side of the cell junction with the seven-pass transmembrane protein Frizzled, and on the other side with the four-pass transmembrane protein Strabismus. The cytoplasmic proteins Diego and Dishevelled are co-localised with Frizzled, and Prickle co-localises with Strabismus. Between these six components there are myriad possible molecular interactions, which could stabilise or destabilise the intercellular complexes and lead to their sorting into polarised distributions within cells. Post-translational modifications are key regulators of molecular interactions between proteins. Several post-translational modifications of core proteins have been reported to be of functional significance, in particular phosphorylation and ubiquitination. In this review, we discuss the molecular control of planar polarity and the molecular ecology of the core planar polarity intercellular complexes. Furthermore, we highlight the importance of understanding the spatial control of post-translational modifications in the establishment of planar polarity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kacker, Sandeep, Varuneshwar Parsad, Naveen Singh, Daria Hordiichuk, Stacy Alvarez, Mahnoor Gohar, Anshu Kacker und Sunil Kumar Rai. „Planar Cell Polarity Signaling: Coordinated Crosstalk for Cell Orientation“. Journal of Developmental Biology 12, Nr. 2 (29.04.2024): 12. http://dx.doi.org/10.3390/jdb12020012.

Der volle Inhalt der Quelle
Annotation:
The planar cell polarity (PCP) system is essential for positioning cells in 3D networks to establish the proper morphogenesis, structure, and function of organs during embryonic development. The PCP system uses inter- and intracellular feedback interactions between components of the core PCP, characterized by coordinated planar polarization and asymmetric distribution of cell populations inside the cells. PCP signaling connects the anterior–posterior to left–right embryonic plane polarity through the polarization of cilia in the Kupffer’s vesicle/node in vertebrates. Experimental investigations on various genetic ablation-based models demonstrated the functions of PCP in planar polarization and associated genetic disorders. This review paper aims to provide a comprehensive overview of PCP signaling history, core components of the PCP signaling pathway, molecular mechanisms underlying PCP signaling, interactions with other signaling pathways, and the role of PCP in organ and embryonic development. Moreover, we will delve into the negative feedback regulation of PCP to maintain polarity, human genetic disorders associated with PCP defects, as well as challenges associated with PCP.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Wansleeben, Carolien, und Frits Meijlink. „The planar cell polarity pathway in vertebrate development“. Developmental Dynamics 240, Nr. 3 (08.02.2011): 616–26. http://dx.doi.org/10.1002/dvdy.22564.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Wu, Gang, Jiao Ge, Xupei Huang, Yimin Hua und Dezhi Mu. „Planar Cell Polarity Signaling Pathway in Congenital Heart Diseases“. Journal of Biomedicine and Biotechnology 2011 (2011): 1–8. http://dx.doi.org/10.1155/2011/589414.

Der volle Inhalt der Quelle
Annotation:
Congenital heart disease (CHD) is a common cardiac disorder in humans. Despite many advances in the understanding of CHD and the identification of many associated genes, the fundamental etiology for the majority of cases remains unclear. The planar cell polarity (PCP) signaling pathway, responsible for tissue polarity inDrosophilaand gastrulation movements and cardiogenesis in vertebrates, has been shown to play multiple roles during cardiac differentiation and development. The disrupted function of PCP signaling is connected to some CHDs. Here, we summarize our current understanding of how PCP factors affect the pathogenesis of CHD.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Werner, Michael E., Peter Hwang, Fawn Huisman, Peter Taborek, Clare C. Yu und Brian J. Mitchell. „Actin and microtubules drive differential aspects of planar cell polarity in multiciliated cells“. Journal of Cell Biology 195, Nr. 1 (26.09.2011): 19–26. http://dx.doi.org/10.1083/jcb.201106110.

Der volle Inhalt der Quelle
Annotation:
Planar cell polarization represents the ability of cells to orient within the plane of a tissue orthogonal to the apical basal axis. The proper polarized function of multiciliated cells requires the coordination of cilia spacing and cilia polarity as well as the timing of cilia beating during metachronal synchrony. The planar cell polarity pathway and hydrodynamic forces have been shown to instruct cilia polarity. In this paper, we show how intracellular effectors interpret polarity to organize cellular morphology in accordance with asymmetric cellular function. We observe that both cellular actin and microtubule networks undergo drastic reorganization, providing differential roles during the polarized organization of cilia. Using computational angular correlation analysis of cilia orientation, we report a graded cellular organization downstream of cell polarity cues. Actin dynamics are required for proper cilia spacing, global coordination of cilia polarity, and coordination of metachronic cilia beating, whereas cytoplasmic microtubule dynamics are required for local coordination of polarity between neighboring cilia.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Funato, Yosuke, Tatsuo Michiue, Takeshi Terabayashi, Akira Yukita, Hiroki Danno, Makoto Asashima und Hiroaki Miki. „Nucleoredoxin regulates the Wnt/planar cell polarity pathway inXenopus“. Genes to Cells 13, Nr. 9 (September 2008): 965–75. http://dx.doi.org/10.1111/j.1365-2443.2008.01220.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

LaMonica, Kristi A., Maya Bass und Laura Grabel. „The planar cell polarity pathway regulates parietal endoderm outgrowth“. Developmental Biology 306, Nr. 1 (Juni 2007): 371. http://dx.doi.org/10.1016/j.ydbio.2007.03.542.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

LaMonica, Kristi, Maya Bass und Laura Grabel. „The planar cell polarity pathway directs parietal endoderm migration“. Developmental Biology 330, Nr. 1 (Juni 2009): 44–53. http://dx.doi.org/10.1016/j.ydbio.2009.03.008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Peunova, Natalia, und Grigori Enikolopov. „P61. NO links planar cell polarity pathway with ciliogenesis“. Nitric Oxide 19 (2008): 57. http://dx.doi.org/10.1016/j.niox.2008.06.158.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Rocque, Brittany, und Elena Torban. „Planar Cell Polarity Pathway in Kidney Development and Function“. Advances in Nephrology 2015 (25.02.2015): 1–15. http://dx.doi.org/10.1155/2015/764682.

Der volle Inhalt der Quelle
Annotation:
The evolutionarily conserved planar cell polarity (PCP) signaling pathway controls tissue polarity within the plane orthogonal to the apical-basal axis. PCP was originally discovered in Drosophila melanogaster where it is required for the establishment of a uniform pattern of cell structures and appendages. In vertebrates, including mammals, the PCP pathway has been adapted to control various morphogenetic processes that are critical for tissue and organ development. These include convergent extension (crucial for neural tube closure and cochlear duct development) and oriented cell division (needed for tubular elongation), ciliary tilting that enables directional fluid flow, and other processes. Recently, strong evidence has emerged to implicate the PCP pathway in vertebrate kidney development. In this review, we will describe the experimental data revealing the role of PCP signaling in nephrogenesis and kidney disease.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Planar cell polarity pathway"

1

Suriben, Rowena Mae Obina. „Dact1 functions in the planar cell polarity pathway during vertebrate gastrulation“. Diss., Search in ProQuest Dissertations & Theses. UC Only, 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3390079.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Yates, Laura Louise. „The role of the planar cell polarity pathway in branching morphogenesis“. Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:65200972-a024-4b68-bfd3-a857ec8d99d8.

Der volle Inhalt der Quelle
Annotation:
The development of organs such as the lung and kidney occurs by branching morphogenesis. Changes in the cytoskeletal architecture, cell-cell adhesion and cell polarity are necessary for the formation of new branches. Interactions and reciprocal signalling between epithelial and mesenchymal cells mediate these organised cell movements that give rise to a complex system of tubes suitable for the transport of gas or fluids. Mutations that disrupt formation of either the correct number, or shape of epithelial branches, affect lung function. This, in turn, can lead to congenital abnormalities such as cystadenomatoid malformations, pulmonary hypertension or lung hypoplasia. Defects in lung architecture are also associated with adult lung disease, particularly in cases of idiopathic lung fibrosis. Identifying the signaling pathways that drive epithelial tube formation will likely shed light on both congenital and adult lung disease. This study shows that mutations in the planar cell polarity (PCP) genes: Celsr1; Vangl2 and Scribble, lead to disrupted lung development and defects in lung architecture. Examination of Vangl2 mutant kidneys reveals similar impairment of branching morphogenesis. Detailed histological and immunocytochemical analysis reveals that lungs from Celsr1Crsh/Crsh, Vangl2Lp/Lp and ScribbleCrc/Crc mice are small and misshapen with fewer branches, and by late gestation exhibit thickened interstitial mesenchyme and defective saccular formation. Moreover, epithelial integrity is disrupted, cytoskeletal remodeling perturbed and mutant endoderm does not branch normally in response to the chemoattractant FGF10. In ex-vivo culture, inhibition of Rho kinase, an important downstream effector of the PCP signaling pathway, can mimic the branching defects observed in these three mouse mutants. Furthermore, all three proteins are present in restricted spatial domains within lung epithelium. ScribbleCrc/Crc lungs, the most severely affected line, exhibit additional defects in components of the tight and adherens junctions; this in turn affects lumen diameter. These findings show that components of the PCP pathway: Celsr1; Vangl2 and Scribble are required for normal foetal lung development, thereby revealing a novel signalling pathway critical for this process. Examination of postnatal mice was not possible as homozygous mutations result in embryonic lethality. However, an assessment of Vangl2Lp/+ mice reveals that loss of a single copy of Vangl2 is enough to cause defects in embryonic lung development that persist into adult life, affecting lung function. Similarly, Vangl2Lp/+ mice show a small but significant reduction in kidney glomeruli.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Classen, Anne-Kathrin. „Hexagonal packing of Drosophila wing epithelial cells by the Planar Cell Polarity pathway“. Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2006. http://nbn-resolving.de/urn:nbn:de:swb:14-1157034530833-40169.

Der volle Inhalt der Quelle
Annotation:
The mechanisms that order cellular packing geometry are critical for the functioning of many tissues, but are poorly understood. Here we investigate this problem in the developing wing of Drosophila. The surface of the wing is decorated by hexagonally packed hairs that are uniformly oriented towards the distal wing tip. They are constructed by a hexagonal array of wing epithelial cells. We find that wing epithelial cells are irregularly arranged throughout most of development but become hexagonally packed shortly before hair formation. During the process, individual cell junctions grow and shrink, resulting in local neighbor exchanges. These dynamic changes mediate hexagonal packing and require the efficient delivery of E-cadherin to remodeling junctions; a process that depends on both the large GTPase Dynamin and the function of Rab11 recycling endosomes. We suggest that E-cadherin is actively internalized and recycled as wing epithelial cells pack into a regular hexagonal array. Hexagonal packing furthermore depends on the activity of the Planar Cell Polarity proteins. The Planar Cell Polarity group of proteins coordinates complex and polarized cell behavior in many contexts. No common cell biological mechanism has yet been identified to explain their functions in different tissues. A genetic interaction between Dynamin and the Planar Cell Polarity mutants suggests that the planar cell polarity proteins may modulate Dynamin-dependent trafficking of E-cadherin to enable the dynamic remodeling of junctions. We furthermore show that the Planar Cell Polarity protein Flamingo can recruit the exocyst component Sec5. Sec5 vesicles also co-localizes with E-cadherin and Flamingo. Based on these observations we propose that during the hexagonal repacking of the wing epithelium these proteins polarize the trafficking of E-cadherin-containing exocyst vesicles to remodeling junctions. The work presented in this thesis shows that one of the basic cellular functions of planar cell polarity signaling may be the regulation of dynamic cell adhesion. In doing so, the planar cell polarity pathway mediates the acquisition of a regular packing geometry of Drosophila wing epithelial cells. We identify polarized exocyst-dependent membrane traffic as the first basic cellular mechanism that can explain the role of PCP proteins in different developmental systems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Shafer, Jeong Deok Beth. „Planar cell polarity pathway and axon guidance in the developing spinal cord“. Diss., [La Jolla] : University of California, San Diego, 2010. http://wwwlib.umi.com/cr/ucsd/fullcit?p3397199.

Der volle Inhalt der Quelle
Annotation:
Thesis (Ph. D.)--University of California, San Diego, 2010.
Title from first page of PDF file (viewed March 23, 2010). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 95-105).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Godfrey, Grayland W. II. „Characterizing the Role of Key Planar Cell Polarity Pathway Components in Axon Guidance“. VCU Scholars Compass, 2017. http://scholarscompass.vcu.edu/etd/4841.

Der volle Inhalt der Quelle
Annotation:
An essential process to the development of the neural network of the nervous system is axon guidance. The noncanonical Wnt/Planar Cell Polarity pathway has been identified as an integral component in controlling the projection of axons during axon guidance. Prickle, ROR1 and ROR2 are PCP related proteins that do not have clearly defined roles in the process. This study aims to use zebrafish CoPA neurons as a model to study the roles of Prickle, ROR1, and ROR2 in axon guidance. Using in situ hybridization, morpholino knockdown, and CRISPR/Cas9 loss of function experiments were able to identify ror1, ror2 and prickle as potential required components in CoPA neuron axon guidance. Elucidating the role of these protein in axon guidance not only will increase our knowledge of the PCP pathway but it will also increase our understanding of the development of the nervous system.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Watson, Julia Alice. „Investigating the role of Wnt/Planar cell polarity (PCP) in Neuromesodermal Progenitors (NMPs)“. Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/31193.

Der volle Inhalt der Quelle
Annotation:
Neuromesodermal progenitors (NMPs) are bipotent progenitors, located at the caudal end of the embryo and are essential for axis formation. These stem cell-like progenitors possess the ability to self-renew and differentiate to both mesodermal and neural lineages, such as skeletal muscle and spinal cord derivatives. These progenitors arise at E8.5 and are localised in the caudal lateral epiblast (CLE), a posterior region of the embryo near the primitive streak. Later in development, they reside in the tail bud until cessation of axial elongation at E13.5. Throughout these stages NMPs are characteristically marked by co-expression of T(Bra) (Brachyury) and Sox2. This characteristic is also present in in vitro NMPs, which can be derived from Epiblast Stem Cells (EpiSCs) through treatment with Wnt/β-catenin signalling agonists and Fgf2, which simulates their in vivo environment. Protein and mRNA profiling of NMPs and mutant phenotypes in vivo supports the hypothesis that a non-canonical Wnt pathway, the Wnt/Planar Cell Polarity pathway (PCP) could be involved in NMP fate decision and/or maintenance. This thesis focuses on understanding more about the role of PCP by aiming to identify the spatio-temporal profile of Wnt/PCP pathway components in NMP regions during axial elongation, as well as determining its role in NMP behaviour through manipulation of this pathway via in vivo and in vitro assays Employing in situ hybridisation and immunohistochemistry techniques, key Wnt/PCP components, including Pk1, Vangl2 and Ptk7, were confirmed to be present in in vivo and in vitro NMPs, thus, providing strong evidence that Wnt/PCP may be involved regulating NMP behaviour. Disruption of Wnt/PCP signalling through overexpression of Wnt/PCP components was tested in refined in vivo and in vitro assays. Overexpression of Vangl2 and Ptk7, but not Pk1 in NMPs regions in vivo resulted in loss of contribution to neural lineages, as well as lower contribution to NMP regions themselves. Similarly, Wnt/PCP components were disrupted in vitro through generation of dox-inducible overexpression cells lines for Wnt/PCP components. These lines were used to generate NMPs from an optimised novel alternative source Epiblast-Like Cells (EpiLCs), however no clear affect to lineage was observed. Overall this work has successfully advanced our knowledge of Wnt/PCP mediated control of NMP differentiation and maintenance, and provided a finer grained description of the relationships between them.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Freeman, Emily. „Crosstalk Between the Planar Cell Polarity and Hedgehog Signaling Pathways Influences Satellite Cell Fate“. Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/38707.

Der volle Inhalt der Quelle
Annotation:
Our laboratory has identified two secreted proteins, Wnt7a and Sonic hedgehog (Shh), that regulate satellite cell (SC) fate, during muscle differentiation. While Wnt7a stimulates symmetric SC division through the planar cell polarity (PCP) pathway, Shh activates Myf5 expression in the committed SC following asymmetric division through cilia-mediated Hedgehog (Hh) signaling. Crosstalk between these pathways has been well characterized during development, and is likely to be conserved in muscle regeneration. Indeed, accumulating evidence suggests the PCP pathway influences primary cilia formation, an organelle required for proper Hh signal transduction. Here we show that Wnt7a treatment in primary myoblasts increases the presence of primary cilia. Additionally, using myofiber culture, we demonstrate that Wnt7a increases myogenin (MyoG) expression. Removal of primary cilia through a small interfering RNA (siRNA) targeted towards IFT88 impedes Wnt7a mediated MyoG expression, suggesting crosstalk between the PCP and Hh pathways facilitates muscle differentiation. Furthermore, through siRNA knockdown we have identified the downstream PCP effectors, Inturned and Fuzzy as the main candidates responsible for this crosstalk. Knockdown of either Inturned or Fuzzy impedes Wnt7a-mediated MyoG expression. Taken together our data demonstrates crosstalk between the PCP pathway and Hh signaling regulates the differentiation of SCs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Oteiza, Alvarez Pablo. „Role of the Planar Cell Polarity Pathway in the Morphogenesis of the Laterality Organ in Zebrafish“. Tesis, Universidad de Chile, 2009. http://www.repositorio.uchile.cl/handle/2250/110540.

Der volle Inhalt der Quelle
Annotation:
A pesar de su aparente simetría bilateral, el plan corporal de los vertebrados presenta consitentes asimetrías en localización, estructura y función de diversos órganos internos como el corazón, los intestinos y el cerebro. Los mecanismos mediante los cuales el eje izquierda-derecha se establece durante el desarrollo embrionario han evolucionado desde arreglamientos cito esqueléticos y flujos iónicos tempranos hacia la actividad de estructuras ciliadas transigentes. Se ha propuesto que la actividad de los cilios en estas estructuras (denominadas órganos de lateralidad) genera un flujo extracelular de morfógenos hacia la izquierda de la línea media (el flujo Nodal), el cual determina la lateralidad de cascadas de expresión génica asimétrica y, como consecuencia, de organogénesis asimétrica (revisado en Hamada y cols., 2002; Hirokawa y cols., 2006; Raya e Izpisúa-Belmonte, 2006). Aunque la presencia de estos órganos de lateralidad se encuentra conservada en vertebrados incluyendo mamíferos (Nonaka y cols., 1998; Okada y cols., 2005), anfibios (Schweickert y cols., 2006) y peces teleósteos (Essner y cols., 2005; Okada y cols., 2005), tanto el orígen embrionario como los mecanismos mediante los cuales las células ciliadas se organizan en una estructura capaz de inducir un flujo nodal hacia la izquierda son prácticamente desconocidos. En el pez cebra, los precursores de las células ciliadas son un grupo de aproximadamente 20-30 células denominadas Dorsal Forerunner Cells (DFCs). Las DFCs no involucionan sino que migran por delante del blastodermo dorsal durante la gastrulación para dar origen a principios de la somitogénesis a la vesicula de Kupffer (KV), una estructura epithelial ciliada en la cual se genera el flujo nodal del pez cebra (Cooper y D’amico, 1996; Essner y cols., 2005). En esta tesis, hemos utilizado microscopía confocal y de 2-fotones en tiempo extendido para analizar a nivel de célula única el origen, migración y organogénesis de las DFCs. Nuestros resultados demuestran que, inesperadamente, las DFCs se originan de la capa epitelial extraembrionaria del pez cebra. Nuestros análisis muestran que células epiteliales dorsales (Dorsal Epithelial Cells ó DSE) ingresan previo a la gastrulación en un proceso dependiente de la vía de señalización de Nodal/TGF y son cubiertas por las células vecinas de la capa epitelial envolvente (la Enveloping Layer ó EVL) dando origen a las DFCs. Las DFCs entonces se polarizan hacia la EVL y se unen a ella migrando en estrecho contacto con el epitelio externo durante la epibolía. A medida que la epibolía continúa, las DFCs se organizan en sus puntos de contacto con la EVL formando estructuras epiteliales con forma de roseta, las cuales son internalizadas cuando las DFCs y la EVL se separan a fines de la gastrulación. A comienzos de la somitogénesis, estas rosetas internalizadas abren sus puntos centrales y coalescen en una estructura única a partir de la cual el lumen de la KV aparece y se expande. Al mismo tiempo, la zona apical de las rosetas desarrolla cilios mótiles que generan un flujo Nodal contra las manecillas del reloj. Nuestros resultados además demuestran que wnt11 (Heisenberg y cols., 2000) y prickle 1a (Veeman y cols., 2003; Carreira-Barbosa y cols., 2003), dos components de la vía de señalización no canónica de Wnt o de polaridad celular planar (PCP) participan cooperativamente en la organogénesis de la KV mediante la regulación de la cohesion tisular de las DFCs. En embriones con pérdida de función de wnt11/pk1a, las DFCs aparecen como un grupo celular menos compacto, las rosetas epiteliales fallan en coalescer y aparecen claros defectos morfológicos en el lumen de la KV, los cuales van desde una drástica reducción en su volumen hasta una severa fragmentación. Además, los cilios presentan una fuerte reducción en su longitud, lo que impide la inducción de un flujo nodal efectivo. Estos defectos llevan finalmente a una distribución aleatoria de la expresión génica de Nodal y a una lateralidad randomizada de los órganos internos. Con la finalidad de comprender los mecanismos mediante los cuales la vía de Wnt/PCP controla la cohesión del grupo de DFCs, procedimos a medir mediante microscopía de fuerza atómica (AFM) las fuerzas de adhesión entre DFCs aisladas de embriones con pérdida de función de wnt11/pk1a. Nuestras mediciones indican que la pérdida de función de la vía de Wnt/PCP induce una marcada reducción en las propiedades de adhesión célula-célula de las DFCs. Además, los defectos en la KV ocasionados por la pérdida de función de wnt11/pk1a pueden ser fenocopiados por la pérdida de función de la molécula de adhesión E-cadherina específicamente en las DFCs. En su conjunto, los resultados de la presente tesis entregan novedosos datos sobre el orígen y las transformaciones morfogenéticas que llevan a la formación de la KV, el órgano de lateralidad del pez cebra; y revelan un rol fundamental de la cohesión tisular mediada por la vía de Wnt/PCP en la coordinación de este proceso.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Tanner, Raymond. „A Role for the Planar Cell Polarity Pathway in Neuronal Positioning Along the AP Axis of C. elegans“. Thesis, Université d'Ottawa / University of Ottawa, 2014. http://hdl.handle.net/10393/31521.

Der volle Inhalt der Quelle
Annotation:
We sought to investigate the role of the Planar Cell Polarity (PCP) pathway in neuronal positioning along the Anterior-Posterior (AP) axis of C. elegans, and chose the worm’s DD-type motor neurons as a model. The six DD neurons (DD1-DD6) are evenly spaced in the ventral nerve cord of wild type animals. Here we showed that mutations in core PCP genes caused DD neuron spacing and positioning defects. prkl-1 double mutant combinations with vang-1 and fmi-1 showed a suppression of the more severe prkl-1 single mutant defects, which was evidence of genetic interactions between these PCP components. We also conducted a candidate screen of Frizzled, Dishevelled, Wnt, and ROCK genes, and found that dsh-1/Dishevelled, mom-2/Wnt and let-502/ROCK also played roles in DD neuronal positioning. Both vang-1 and prkl-1 were found to function within the nervous system to guide DD neuronal positioning, and prkl-1 was further identified as playing a cell autonomous role. The origins of observed DD neuron anterior positioning defects were investigated during embryogenesis, in which 1.5 fold stage prkl-1(ok3182) embryos displayed delayed intercalation of the DD neurons. This represents a novel role for the PCP pathway in mediating DD neuronal intercalation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Sasselli, V. „The potential role of Rac signalling and the planar cell polarity pathway in wiring of the enteric nervous system“. Thesis, University College London (University of London), 2011. http://discovery.ucl.ac.uk/1318135/.

Der volle Inhalt der Quelle
Annotation:
The functional development of the enteric nervous system (ENS) requires newly generated neurons and their progenitors to migrate to their appropriate sites, extend neurites, guide axons and dendrites to suitable locations and establish synaptic connections with the appropriate targets. Very little is known about the molecular mechanism underlying these processes. Recent studies have suggested a potential role of Rho GTPases as intracellular regulators of several ENS developmental processes. However, the relative participation of specific members of the family in migration, neurogenesis and axonal guidance of enteric progenitors has not been addressed yet. Here, we investigate the in vivo role and genetic interaction of two members of the Rho-GTPase family, Rac1 and Rac3 in enteric neurogenesis. Taking advantage of the Cre/loxP recombination system and a Rac1 conditional inactivation mouse strain (Rac1flox/flox), we generated a Sox10Cre; Rac1flox/flox;R26ReYFP mouse line, where Rac1 gene is specifically ablated in the neural crest population which is also labeled by the expression of Yellow Fluorescent Protein. Secondly, we generated double Rac1;Rac3 mutant animals by crossing the Sox10Cre;Rac1flox;R26ReYFP mouse line to a constitutive Rac3 KO strain (Rac3-/-). In vivo and in vitro studies on Rac-deficient enteric neural crest cells and neurons showed distinctive roles for Rac1 and Rac3 in migration of enteric neural crest cells (ENCCs), in development of enteric neurons and in control of cell polarity within the developing ENS. In addition, we also undertook a candidate gene approach to investigate the involvement of Wnt-signaling genes in enteric axon guidance and circuit formation. We found that two of the core components of the Planar Cell Polarity pathway, the Wnt receptor Frizzled 3 (Fzd3) and the Cadherin EGF LAG seven-pass G-type receptor 3 (Celsr3) are expressed specifically in ENCCs during embryonic development. Here we show, by using a combination of in vivo approaches that in mice deficient in either protein, enteric neurons had characteristic defects in neuronal tract formation and in patterning of individual axonal projections evident from early stages of ENS development. Furthermore, preliminary data show that these specific defects in ENS wiring might be the cause of impaired intestinal function and, therefore, provide the basis for understanding the aetiopathology of several idiopathic enteric neuropathies in humans.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Planar cell polarity pathway"

1

Turksen, Kursad, Hrsg. Planar Cell Polarity. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-61779-510-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Marek, Mlodzik, Hrsg. Planar cell polarization during development. Amsterdam: Elsevier, 2005.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Zaffran, Stéphane. Cardiac growth II: Cardiomyocyte polarization. Herausgegeben von José Maria Pérez-Pomares, Robert G. Kelly, Maurice van den Hoff, José Luis de la Pompa, David Sedmera, Cristina Basso und Deborah Henderson. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198757269.003.0010.

Der volle Inhalt der Quelle
Annotation:
During vertebrate embryogenesis, the planar cell polarity (PCP) signalling pathway is responsible for cell movements essential for convergent extension during gastrulation, neural tube closure, neural crest cell migration, and heart morphogenesis. In the heart, the non-canonical Wnt/PCP pathway regulates cell polarity, cell shape, and cell dynamics during formation of the cardiac crescent and deployment of second heart field cardiac progenitors to the poles of the heart tube. PCP signalling is also essential for the establishment of left–right patterning in the early embryo. This chapter reviews our current understanding of PCP signalling in heart morphogenesis and how it affects the pathogenesis of congenital heart diseases.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kühn, Wolfgang, und Gerd Walz. The molecular basis of ciliopathies and cyst formation. Herausgegeben von Neil Turner. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199592548.003.0303.

Der volle Inhalt der Quelle
Annotation:
Abnormalities of the cilium, termed ‘ciliopathies’, are the prime suspect in the pathogenesis of renal cyst formation because the gene products of cystic disease-causing genes localize to them, or near them. However, we only partially understand how cilia maintain the geometry of kidney tubules, and how abnormal cilia lead to renal cysts, and the diverse range of diseases attributed to them. Some non-cystic diseases share pathology of the same structures. Although still incompletely understood, cilia appear to orient cells in response to extracellular cues to maintain the overall geometry of a tissue, thereby intersecting with the planar cell polarity (PCP) pathway and the actin cytoskeleton. The PCP pathway controls two morphogenetic programmes, oriented cell division (OCD) and convergent extension (CE) through cell intercalation that both seem to play a critical role in cyst formation. The two-hit theory of cystogenesis, by which loss of the second normal allele causes tubular epithelial cells to form kidney cysts, has been largely borne out. Additional hits and influences may better explain the rate of cyst formation and inter-individual differences in disease progression. Ciliary defects appear to converge on overlapping signalling modules, including mammalian target of rapamycin and cAMP pathways, which can be targeted to treat human cystic kidney disease irrespective of the underlying gene mutation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Roskelley, Calvin. Planar Cell Polarity. Morgan & Claypool Life Science Publishers, 2012.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Planar Cell Polarity During Development. Elsevier, 2012. http://dx.doi.org/10.1016/c2011-0-04515-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Yang, Yingzi. Planar Cell Polarity During Development. Elsevier Science & Technology Books, 2012.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Yang, Yingzi. Planar Cell Polarity During Development. Elsevier Science & Technology Books, 2012.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Turksen, Kursad. Planar Cell Polarity: Methods and Protocols. Humana Press, 2017.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Planar Cell Polarity Methods And Protocols. Humana Press, 2012.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Planar cell polarity pathway"

1

LaMonica, Kristi, und Laura Grabel. „The Planar Cell Polarity Pathway and Parietal Endoderm Cell Migration“. In Methods in Molecular Biology, 187–200. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-61779-510-7_15.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Endo, Mitsuharu, Michiru Nishita und Yasuhiro Minami. „Analysis of Wnt/Planar Cell Polarity Pathway in Cultured Cells“. In Methods in Molecular Biology, 201–14. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-61779-510-7_16.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Moreira, Sofia, Jaime A. Espina, Joana E. Saraiva und Elias H. Barriga. „A Toolbox to Study Tissue Mechanics In Vivo and Ex Vivo“. In Methods in Molecular Biology, 495–515. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2035-9_29.

Der volle Inhalt der Quelle
Annotation:
AbstractDuring vertebrate embryogenesis, tissues interact and influence each other’s development to shape an embryo. While communication by molecular components has been extensively explored, the role of mechanical interaction between tissues during embryogenesis is just starting to be revealed. Addressing mechanical involvement in morphogenesis has traditionally been challenging mainly due to the lack of proper tools to measure and modify mechanical environments of cells in vivo. We have recently used atomic force microscopy (AFM) to show that the migration of the Xenopus laevis cephalic neural crest cells is triggered by stiffening of the mesoderm, a tissue that neural crest cells use as a migratory substrate in vivo. Interestingly we showed that the activity of the planar cell polarity (PCP) pathway is required to mediate this novel mechanical interaction between two tissues. In this chapter, we share the toolbox that we developed to study the role of PCP signaling in mesoderm cell accumulation and stiffening (in vivo) as well as the impact of mesoderm stiffness in promoting neural crest cell polarity and migration (ex vivo). We believe that these tools can be of general use for investigators interested in addressing the role of mechanical inputs in vivo and ex vivo.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Jessen, Jason R. „Analyzing Planar Cell Polarity During Zebrafish Gastrulation“. In Methods in Molecular Biology, 69–78. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-61779-510-7_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Axelrod, Jeffrey D. „Mathematical Modeling of Planar Cell Polarity Signaling“. In Springer Proceedings in Mathematics, 27–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-20164-6_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Li, Linxi, Haiqi Chen, Qingquan Lian, Ren-Shan Ge und C. Yan Cheng. „Does planar cell polarity matter during spermatogenesis?“ In Spermatogenesis, 211–19. Boca Raton, FL : CRC Press, [2019]: CRC Press, 2018. http://dx.doi.org/10.1201/9780429488634-17.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

May-Simera, Helen, und Matthew W. Kelley. „Examining Planar Cell Polarity in the Mammalian Cochlea“. In Methods in Molecular Biology, 157–71. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-61779-510-7_13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Ossipova, Olga, Pamela Mancini und Sergei Y. Sokol. „Imaging Planar Cell Polarity Proteins in Xenopus Neuroectoderm“. In Methods in Molecular Biology, 147–61. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2035-9_10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Quatrano, Ralph S. „Surface Control of Cell Polarity, the Plane of Cell Division, and Cell Fate in Fucus Embryos“. In Cellular Integration of Signalling Pathways in Plant Development, 189–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-72117-5_17.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Chuykin, Ilya, und Sergei Y. Sokol. „Analysis of Planar Cell Polarity Complexes by Proximity Biotinylation in Xenopus Embryos“. In Methods in Molecular Biology, 97–106. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2035-9_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Planar cell polarity pathway"

1

Ho, M., K. R. Chaudhary und D. J. Stewart. „Wnt/Planar Cell Polarity Pathway Signaling Between Endothelial Cell and Pericyte-Like Smooth Muscle Cells Enhance Vascular Repaving in an Acellular Lung Scaffold“. In American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a2554.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Asad, Mohammad, Meng Kang Wong, Tuan Zea Tan, David Virshup, Jean Paul Thiery und Ruby Yun-Ju Huang. „Abstract A30: Frizzled-7 (FZD7)-mediated non-canonical Wnt-Planar Cell Polarity (PCP) signalling pathway as a novel molecular driver for the C5/Proliferative/Stem-A molecular subtype of ovarian cancer.“ In Abstracts: AACR Special Conference: Advances in Ovarian Cancer Research: Exploiting Vulnerabilities; October 17-20, 2015; Orlando, FL. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1557-3265.ovca15-a30.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Raffard, Robin, Keith Amonlirdviman, Jeffrey D. Axelrod und Claire J. Tomlin. „Automatic Parameter Identification via the Adjoint Method, with Application to Understanding Planar Cell Polarity“. In Proceedings of the 45th IEEE Conference on Decision and Control. IEEE, 2006. http://dx.doi.org/10.1109/cdc.2006.377697.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Borg, Jean-Paul, Alexandra Walton, Eric Bailly, Sylvie Marchetto und Stéphane Audebert. „Abstract 339: Identification of a novel isoform of WNT/planar cell polarity VANGL2 in breast cancer“. In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-339.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Gao, Qian, Fei Liu, David Gilbert, Monika Heiner und David Tree. „A multiscale approach to modelling planar cell polarity in Drosophila wing using hierarchically coloured Petri nets“. In the 9th International Conference. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/2037509.2037538.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Lu, Zhiyi. „Navigating beyond the surface: unveiling the interplay of planar, apical-basal cell polarity, and cytoskeletal remodeling“. In Third International Conference on Biological Engineering and Medical Science (ICBioMed2023), herausgegeben von Alan Wang. SPIE, 2024. http://dx.doi.org/10.1117/12.3013003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Borg, Jean-Paul. „Abstract 34: Identification of a phosphorylation cascade triggering Wnt/planar cell polarity signaling in breast cancer cells“. In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Kiran-Deevi, Ravi, Orla T. Cox und Rosemary O'Connor. „Abstract 4458: PDLIM2 is essential for feedback regulation of the B1 integrin-FAK-RhoA signalling pathway to maintain epithelial cell polarity and suppress transformation“. In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-4458.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Roth, Doris, Remi Villenave, Anne Van Der Does, Pieter Hiemstra und Janna Nawroth. „Late Breaking Abstract - High-content phenotypic profiling reveals that IL-13 impairs planar cell polarity and directional mucus clearance in human airway tissue“. In ERS International Congress 2019 abstracts. European Respiratory Society, 2019. http://dx.doi.org/10.1183/13993003.congress-2019.oa1898.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Stephens, John J., Glen C. Martin und Chia-fon F. Lee. „Experimental Investigation of a Direct Injection Diesel Injector in a Constant Volume Injection Chamber“. In ASME 2001 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/2001-ice-402.

Der volle Inhalt der Quelle
Annotation:
Abstract In an optically accessible, constant volume, quiescent injection cell, the liquid phase of a non-evaporating direct injection spray was visualized using the Exciplex Planar Laser Induced Fluorescence technique. The goal of this work was to develop a correlation for the effect of ambient density on spray tip penetration. Therefore, an experimental test matrix was set up with injection pressure and ambient density as the variables. Good optical access and a short visualization pathway allowed for high-resolution images to be recorded simultaneously via two CCD cameras. Images were recorded at various timings to temporally resolve the spray. A correlation was developed and the results show a strong dependence of spray tip penetration on ambient density.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Planar cell polarity pathway"

1

Eshed, Yuval, und John Bowman. Harnessing Fine Scale Tuning of Endogenous Plant Regulatory Processes for Manipulation of Organ Growth. United States Department of Agriculture, 2005. http://dx.doi.org/10.32747/2005.7696519.bard.

Der volle Inhalt der Quelle
Annotation:
Background and objectives: Manipulation of plant organ growth is one of the primary reasons for the success of mankind allowing increasing amounts of food for human and livestock consumption. In contrast with the successful selection for desirable growth characteristics using plant breeding, transgenic manipulations with single genes has met limited success. While breeding is based on accumulation of many small alterations of growth, usually arise from slight changes in expression patterns, transgenic manipulations are primarily based on drastic, non-specific up-regulation or knock down of genes that can exert different effects during different stages of development. To successfully harness transgenic manipulation to attain desirable plant growth traits we require the tools to subtly regulate the temporal and spatial activity of plant growth genes. Polar morphology along the adaxial/abaxial axis characterizes lateral organs of all plants. Juxtaposition of two cell types along this axis is a prerequisite of laminar growth induction. In the study summarized here, we addressed the following questions: Can we identify and harness components of the organ polarity establishment pathway for prolonged growth? Can we identify specific regulatory sequences allowing spatial and temporal manipulation in various stages of organ development? Can we identify genes associated with YABBY-induced growth alterations? Major conclusions and implications: We showed that regulated expression, both spatially and temporally of either organ polarity factors such as the YABBY genes, or the organ maturation program such as the CIN-TCPs can stimulate substantial growth of leaves and floral organs. Promoters for such fine manipulation could be identified by comparison of non-coding sequences of KAN1, where a highly conserved domain was found within the second intron, or by examination of multiple 5” regions of genes showing transient expression along leaf ontogeny. These promoters illustrate the context dependent action of any gene we examined thus far, and facilitate fine tuning of the complex growth process. Implications, both scientific and agricultural. The present study was carried out on the model organism Arabidopsis, and the broad application of its findings were tested in the tomato crop. We learned that all central regulators of organ polarity are functionally conserved, probably in all flowering plants. Thus, with minor modifications, the rules and mechanisms outlined in this work are likely to be general.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie