Zeitschriftenartikel zum Thema „Placenta; transporter; transportér“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Placenta; transporter; transportér" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Shearman, Lauren P., Alison M. McReynolds, Feng C. Zhou und Jerrold S. Meyer. „Relationship between [125I]RTI-55-labeled cocaine binding sites and the serotonin transporter in rat placenta“. American Journal of Physiology-Cell Physiology 275, Nr. 6 (01.12.1998): C1621—C1629. http://dx.doi.org/10.1152/ajpcell.1998.275.6.c1621.
Der volle Inhalt der QuelleGranitzer, Sebastian, Isabella Ellinger, Rumsha Khan, Katharina Gelles, Raimund Widhalm, Markus Hengstschläger, Harald Zeisler et al. „In vitro function and in situ localization of Multidrug Resistance-associated Protein (MRP)1 (ABCC1) suggest a protective role against methyl mercury-induced oxidative stress in the human placenta“. Archives of Toxicology 94, Nr. 11 (11.09.2020): 3799–817. http://dx.doi.org/10.1007/s00204-020-02900-5.
Der volle Inhalt der Quelledo Imperio, Guinever Eustaquio, Enrrico Bloise, Mohsen Javam, Phetcharawan Lye, Andrea Constantinof, Caroline Dunk, Fernando Marcos dos Reis et al. „Chorioamnionitis Induces a Specific Signature of Placental ABC Transporters Associated with an Increase of miR-331-5p in the Human Preterm Placenta“. Cellular Physiology and Biochemistry 45, Nr. 2 (2018): 591–604. http://dx.doi.org/10.1159/000487100.
Der volle Inhalt der QuelleXu, Jie, Jiao Wang, Yang Cao, Xiaotong Jia, Yujia Huang, Minghui Cai, Chunmei Lu und Hui Zhu. „Downregulation of Placental Amino Acid Transporter Expression and mTORC1 Signaling Activity Contributes to Fetal Growth Retardation in Diabetic Rats“. International Journal of Molecular Sciences 21, Nr. 5 (07.03.2020): 1849. http://dx.doi.org/10.3390/ijms21051849.
Der volle Inhalt der QuelleRoos, S., Y. Kanai, P. D. Prasad, T. L. Powell und T. Jansson. „Regulation of placental amino acid transporter activity by mammalian target of rapamycin“. American Journal of Physiology-Cell Physiology 296, Nr. 1 (Januar 2009): C142—C150. http://dx.doi.org/10.1152/ajpcell.00330.2008.
Der volle Inhalt der QuelleCleal, J. K., P. E. Day, C. L. Simner, S. J. Barton, P. A. Mahon, H. M. Inskip, K. M. Godfrey et al. „Placental amino acid transport may be regulated by maternal vitamin D and vitamin D-binding protein: results from the Southampton Women's Survey“. British Journal of Nutrition 113, Nr. 12 (05.05.2015): 1903–10. http://dx.doi.org/10.1017/s0007114515001178.
Der volle Inhalt der QuelleEricsson, Anette, Bengt Hamark, Nina Jansson, Bengt R. Johansson, Theresa L. Powell und Thomas Jansson. „Hormonal regulation of glucose and system A amino acid transport in first trimester placental villous fragments“. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 288, Nr. 3 (März 2005): R656—R662. http://dx.doi.org/10.1152/ajpregu.00407.2004.
Der volle Inhalt der QuelleAudette, Melanie C., John R. G. Challis, Rebecca L. Jones, Colin P. Sibley und Stephen G. Matthews. „Synthetic Glucocorticoid Reduces Human Placental System A Transport in Women Treated With Antenatal Therapy“. Journal of Clinical Endocrinology & Metabolism 99, Nr. 11 (01.11.2014): E2226—E2233. http://dx.doi.org/10.1210/jc.2014-2157.
Der volle Inhalt der QuelleHan, Lyrialle W., Chunying Gao, Yuchen Zhang, Joanne Wang und Qingcheng Mao. „Transport of Bupropion and its Metabolites by the Model CHO and HEK293 Cell Lines“. Drug Metabolism Letters 13, Nr. 1 (30.04.2019): 25–36. http://dx.doi.org/10.2174/1872312813666181129101507.
Der volle Inhalt der QuelleVinot, C., L. Gavard, J. M. Tréluyer, S. Manceau, E. Courbon, J. M. Scherrmann, X. Declèves et al. „Placental Transfer of Maraviroc in anEx VivoHuman Cotyledon Perfusion Model and Influence of ABC Transporter Expression“. Antimicrobial Agents and Chemotherapy 57, Nr. 3 (07.01.2013): 1415–20. http://dx.doi.org/10.1128/aac.01821-12.
Der volle Inhalt der QuelleRosario, Fredrick J., Nina Jansson, Yoshikatsu Kanai, Puttur D. Prasad, Theresa L. Powell und Thomas Jansson. „Maternal Protein Restriction in the Rat Inhibits Placental Insulin, mTOR, and STAT3 Signaling and Down-Regulates Placental Amino Acid Transporters“. Endocrinology 152, Nr. 3 (01.03.2011): 1119–29. http://dx.doi.org/10.1210/en.2010-1153.
Der volle Inhalt der QuelleLynch, Cameron, Asghar Ali, Victoria Kennedy, Amelia R. Tanner, Quinton A. Winger und Russell V. Anthony. „PSII-34 Placental GLUT3 (SLC2A3) RNA interference: Impact on fetal growth at mid-gestation“. Journal of Animal Science 98, Supplement_4 (03.11.2020): 378. http://dx.doi.org/10.1093/jas/skaa278.665.
Der volle Inhalt der QuelleSt-Pierre, M. V., T. Stallmach, A. Freimoser Grundschober, J. F. Dufour, M. A. Serrano, J. J. G. Marin, Y. Sugiyama und P. J. Meier. „Temporal expression profiles of organic anion transport proteins in placenta and fetal liver of the rat“. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 287, Nr. 6 (Dezember 2004): R1505—R1516. http://dx.doi.org/10.1152/ajpregu.00279.2003.
Der volle Inhalt der QuelleHorackova, Hana, Rona Karahoda, Lukas Cerveny, Veronika Vachalova, Ronja Ebner, Cilia Abad und Frantisek Staud. „Effect of Selected Antidepressants on Placental Homeostasis of Serotonin: Maternal and Fetal Perspectives“. Pharmaceutics 13, Nr. 8 (20.08.2021): 1306. http://dx.doi.org/10.3390/pharmaceutics13081306.
Der volle Inhalt der QuelleHayward, Christina E., Susan L. Greenwood, Colin P. Sibley, Philip N. Baker, John R. G. Challis und Rebecca L. Jones. „Effect of maternal age and growth on placental nutrient transport: potential mechanisms for teenagers' predisposition to small-for-gestational-age birth?“ American Journal of Physiology-Endocrinology and Metabolism 302, Nr. 2 (15.01.2012): E233—E242. http://dx.doi.org/10.1152/ajpendo.00192.2011.
Der volle Inhalt der QuelleRoos, Sara, Theresa L. Powell und Thomas Jansson. „Placental mTOR links maternal nutrient availability to fetal growth“. Biochemical Society Transactions 37, Nr. 1 (20.01.2009): 295–98. http://dx.doi.org/10.1042/bst0370295.
Der volle Inhalt der QuelleEmoto, Akiko, Fumihiko Ushigome, Noriko Koyabu, Hiroshi Kajiya, Koji Okabe, Shoji Satoh, Kiyomi Tsukimori, Hitoo Nakano, Hisakazu Ohtani und Yasufumi Sawada. „H+-linked transport of salicylic acid, an NSAID, in the human trophoblast cell line BeWo“. American Journal of Physiology-Cell Physiology 282, Nr. 5 (01.05.2002): C1064—C1075. http://dx.doi.org/10.1152/ajpcell.00179.2001.
Der volle Inhalt der QuelleBzoskie, L., L. Blount, K. Kashiwai, Y. T. Tseng, W. W. Hay und J. F. Padbury. „Placental norepinephrine clearance: in vivo measurement and physiological role“. American Journal of Physiology-Endocrinology and Metabolism 269, Nr. 1 (01.07.1995): E145—E149. http://dx.doi.org/10.1152/ajpendo.1995.269.1.e145.
Der volle Inhalt der QuelleLofthouse, E. M., S. Perazzolo, S. Brooks, I. P. Crocker, J. D. Glazier, E. D. Johnstone, N. Panitchob et al. „Phenylalanine transfer across the isolated perfused human placenta: an experimental and modeling investigation“. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 310, Nr. 9 (01.05.2016): R828—R836. http://dx.doi.org/10.1152/ajpregu.00405.2015.
Der volle Inhalt der QuelleVaughan, Owen R., Fredrick Thompson, Ramón A. Lorca, Colleen G. Julian, Theresa L. Powell, Lorna G. Moore und Thomas Jansson. „Effect of high altitude on human placental amino acid transport“. Journal of Applied Physiology 128, Nr. 1 (01.01.2020): 127–33. http://dx.doi.org/10.1152/japplphysiol.00691.2019.
Der volle Inhalt der QuelleFord, Dianne. „Intestinal and placental zinc transport pathways“. Proceedings of the Nutrition Society 63, Nr. 1 (Februar 2004): 21–29. http://dx.doi.org/10.1079/pns2003320.
Der volle Inhalt der QuelleSelvaratnam, Johanna, Haiyan Guan, James Koropatnick und Kaiping Yang. „Metallothionein-I- and -II-deficient mice display increased susceptibility to cadmium-induced fetal growth restriction“. American Journal of Physiology-Endocrinology and Metabolism 305, Nr. 6 (15.09.2013): E727—E735. http://dx.doi.org/10.1152/ajpendo.00157.2013.
Der volle Inhalt der QuelleLi, Heng, Etsuko Wada und Keiji Wada. „Maternal Administration of the Herbal Medicine Toki-Shakuyaku-San Promotes Fetal Growth and Placental Gene Expression in Normal Mice“. American Journal of Chinese Medicine 41, Nr. 03 (Januar 2013): 515–29. http://dx.doi.org/10.1142/s0192415x13500377.
Der volle Inhalt der QuelleBloise, Enrrico, Jair R. S. Braga, Cherley B. V. Andrade, Guinever E. Imperio, Lilian M. Martinelli, Roberto A. Antunes, Karina R. Silva et al. „Altered Umbilical Cord Blood Nutrient Levels, Placental Cell Turnover and Transporter Expression in Human Term Pregnancies Conceived by Intracytoplasmic Sperm Injection (ICSI)“. Nutrients 13, Nr. 8 (28.07.2021): 2587. http://dx.doi.org/10.3390/nu13082587.
Der volle Inhalt der QuelleZhou, Fanfan, Mei Hong und Guofeng You. „Regulation of human organic anion transporter 4 by progesterone and protein kinase C in human placental BeWo cells“. American Journal of Physiology-Endocrinology and Metabolism 293, Nr. 1 (Juli 2007): E57—E61. http://dx.doi.org/10.1152/ajpendo.00696.2006.
Der volle Inhalt der QuelleCeckova, Martina, Josef Reznicek, Zuzana Ptackova, Lukas Cerveny, Fabian Müller, Marian Kacerovsky, Martin F. Fromm, Jocelyn D. Glazier und Frantisek Staud. „Role of ABC and Solute Carrier Transporters in the Placental Transport of Lamivudine“. Antimicrobial Agents and Chemotherapy 60, Nr. 9 (11.07.2016): 5563–72. http://dx.doi.org/10.1128/aac.00648-16.
Der volle Inhalt der QuelleJones, H. N., T. Jansson und T. L. Powell. „IL-6 stimulates system A amino acid transporter activity in trophoblast cells through STAT3 and increased expression of SNAT2“. American Journal of Physiology-Cell Physiology 297, Nr. 5 (November 2009): C1228—C1235. http://dx.doi.org/10.1152/ajpcell.00195.2009.
Der volle Inhalt der QuelleOsses, N., L. Sobrevia, C. Cordova, SM Jarvis und DL Yudilevich. „Transport and metabolism of adenosine in diabetic human placenta“. Reproduction, Fertility and Development 7, Nr. 6 (1995): 1499. http://dx.doi.org/10.1071/rd9951499.
Der volle Inhalt der QuelleMatoba, Shogo, Shoko Nakamuta, Kento Miura, Michiko Hirose, Hirosuke Shiura, Takashi Kohda, Nobuaki Nakamuta und Atsuo Ogura. „Paternal knockout of Slc38a4/SNAT4 causes placental hypoplasia associated with intrauterine growth restriction in mice“. Proceedings of the National Academy of Sciences 116, Nr. 42 (30.09.2019): 21047–53. http://dx.doi.org/10.1073/pnas.1907884116.
Der volle Inhalt der QuelleJohnson, Gregory A., Avery C. Kramer, Chelsie Steinhauser, Heewon Seo, Bryan A. McLendon, Robert C. Burghardt, Guoyao Wu und Fuller W. Bazer. „410 Steroids Regulate SLC2A1 and SLC2A3 to Deliver Glucose into Trophectoderm for Metabolism via Glycolysis“. Journal of Animal Science 98, Supplement_4 (03.11.2020): 188–89. http://dx.doi.org/10.1093/jas/skaa278.348.
Der volle Inhalt der QuelleLangmann, Thomas, Richard Mauerer, Alexandra Zahn, Christoph Moehle, Mario Probst, Wolfgang Stremmel und Gerd Schmitz. „Real-Time Reverse Transcription-PCR Expression Profiling of the Complete Human ATP-Binding Cassette Transporter Superfamily in Various Tissues“. Clinical Chemistry 49, Nr. 2 (01.02.2003): 230–38. http://dx.doi.org/10.1373/49.2.230.
Der volle Inhalt der QuelleJansson, Thomas, Marisol Castillo-Castrejon, Madhulika B. Gupta, Theresa L. Powell und Fredrick J. Rosario. „Down-regulation of placental Cdc42 and Rac1 links mTORC2 inhibition to decreased trophoblast amino acid transport in human intrauterine growth restriction“. Clinical Science 134, Nr. 1 (Januar 2020): 53–70. http://dx.doi.org/10.1042/cs20190794.
Der volle Inhalt der QuelleRuis, Matthew T., Kylie D. Rock, Samantha M. Hall, Brian Horman, Heather B. Patisaul und Heather M. Stapleton. „PBDEs Concentrate in the Fetal Portion of the Placenta: Implications for Thyroid Hormone Dysregulation“. Endocrinology 160, Nr. 11 (25.09.2019): 2748–58. http://dx.doi.org/10.1210/en.2019-00463.
Der volle Inhalt der QuelleShrestha, Nirajan, Olivia J. Holland, Nykola L. Kent, Anthony V. Perkins, Andrew J. McAinch, James S. M. Cuffe und Deanne H. Hryciw. „Maternal High Linoleic Acid Alters Placental Fatty Acid Composition“. Nutrients 12, Nr. 8 (23.07.2020): 2183. http://dx.doi.org/10.3390/nu12082183.
Der volle Inhalt der QuelleBraun, Doreen, Eva K. Wirth, Franziska Wohlgemuth, Nathalie Reix, Marc O. Klein, Annette Grüters, Josef Köhrle und Ulrich Schweizer. „Aminoaciduria, but normal thyroid hormone levels and signalling, in mice lacking the amino acid and thyroid hormone transporter Slc7a8“. Biochemical Journal 439, Nr. 2 (28.09.2011): 249–55. http://dx.doi.org/10.1042/bj20110759.
Der volle Inhalt der QuelleSferruzzi-Perri, A. N., O. R. Vaughan, P. M. Coan, M. C. Suciu, R. Darbyshire, M. Constancia, G. J. Burton und A. L. Fowden. „Placental-Specific Igf2 Deficiency Alters Developmental Adaptations to Undernutrition in Mice“. Endocrinology 152, Nr. 8 (14.06.2011): 3202–12. http://dx.doi.org/10.1210/en.2011-0240.
Der volle Inhalt der QuelleJames-Allan, Laura B., Jaron Arbet, Stephanie B. Teal, Theresa L. Powell und Thomas Jansson. „Insulin Stimulates GLUT4 Trafficking to the Syncytiotrophoblast Basal Plasma Membrane in the Human Placenta“. Journal of Clinical Endocrinology & Metabolism 104, Nr. 9 (21.05.2019): 4225–38. http://dx.doi.org/10.1210/jc.2018-02778.
Der volle Inhalt der QuelleLager, Susanne, und Theresa L. Powell. „Regulation of Nutrient Transport across the Placenta“. Journal of Pregnancy 2012 (2012): 1–14. http://dx.doi.org/10.1155/2012/179827.
Der volle Inhalt der QuelleLiu, Ning, Zhaolai Dai, Yunchang Zhang, Jingqing Chen, Ying Yang, Guoyao Wu, Patrick Tso und Zhenlong Wu. „Maternal L-proline supplementation enhances fetal survival, placental development, and nutrient transport in mice†“. Biology of Reproduction 100, Nr. 4 (10.11.2018): 1073–81. http://dx.doi.org/10.1093/biolre/ioy240.
Der volle Inhalt der QuelleVan Gronigen Case, Gerialisa, Kathryn M. Storey, Lauren E. Parmeley und Laura C. Schulz. „Effects of maternal nutrient restriction during the periconceptional period on placental development in the mouse“. PLOS ONE 16, Nr. 1 (14.01.2021): e0244971. http://dx.doi.org/10.1371/journal.pone.0244971.
Der volle Inhalt der QuelleVaughan, Owen R., Katarzyna Maksym, Elena Silva, Kenneth Barentsen, Russel V. Anthony, Thomas L. Brown, Sara L. Hillman et al. „Placenta-specific Slc38a2/SNAT2 knockdown causes fetal growth restriction in mice“. Clinical Science 135, Nr. 17 (31.08.2021): 2049–66. http://dx.doi.org/10.1042/cs20210575.
Der volle Inhalt der QuelleGao, Lu, Chunmei Lv, Chen Xu, Yuan Li, Xiaorui Cui, Hang Gu und Xin Ni. „Differential Regulation of Glucose Transporters Mediated by CRH Receptor Type 1 and Type 2 in Human Placental Trophoblasts“. Endocrinology 153, Nr. 3 (01.03.2012): 1464–71. http://dx.doi.org/10.1210/en.2011-1673.
Der volle Inhalt der QuelleRITCHIE, James W. A., und Peter M. TAYLOR. „Role of the System L permease LAT1 in amino acid and iodothyronine transport in placenta“. Biochemical Journal 356, Nr. 3 (08.06.2001): 719–25. http://dx.doi.org/10.1042/bj3560719.
Der volle Inhalt der QuelleDas, Utpala G., Jing He, Richard A. Ehrhardt, William W. Hay und Sherin U. Devaskar. „Time-dependent physiological regulation of ovine placental GLUT-3 glucose transporter protein“. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 279, Nr. 6 (01.12.2000): R2252—R2261. http://dx.doi.org/10.1152/ajpregu.2000.279.6.r2252.
Der volle Inhalt der QuelleOvergaard, Maria Dahl, Christina Søndergaard Duvald, Mikkel Holm Vendelbo, Steen Bønløkke Pedersen, Steen Jakobsen, Aage Kristian Olsen Alstrup, Emmeli Mikkelsen, Per Glud Ovesen und Michael Pedersen. „Biodistribution of [11C]-Metformin and mRNA Expression of Placentae Metformin Transporters in the Pregnant Chinchilla“. Contrast Media & Molecular Imaging 2019 (30.04.2019): 1–6. http://dx.doi.org/10.1155/2019/9787340.
Der volle Inhalt der QuelleSayama, Seisuke, Anren Song und Yang Xia. „Maternal Erythrocyte ENT1-Mediated AMPK Activation and Oxygen Delivery: A Missing Component Counteracting Placental Hypoxia, Dysfunction, and Fetal Growth Restriction“. Blood 134, Supplement_1 (13.11.2019): 341. http://dx.doi.org/10.1182/blood-2019-123053.
Der volle Inhalt der QuelleVaughan, O. R., T. L. Powell und T. Jansson. „Glucocorticoid regulation of amino acid transport in primary human trophoblast cells“. Journal of Molecular Endocrinology 63, Nr. 4 (November 2019): 239–48. http://dx.doi.org/10.1530/jme-19-0183.
Der volle Inhalt der QuelleJones, H. N., C. J. Ashworth, K. R. Page und H. J. McArdle. „Expression and adaptive regulation of amino acid transport system A in a placental cell line under amino acid restriction“. Reproduction 131, Nr. 5 (Mai 2006): 951–60. http://dx.doi.org/10.1530/rep.1.00808.
Der volle Inhalt der QuelleEllery, Stacey J., Padma Murthi, Miranda L. Davies-Tuck, Paul A. Della Gatta, Anthony K. May, Greg M. Kowalski, Damien L. Callahan et al. „Placental creatine metabolism in cases of placental insufficiency and reduced fetal growth“. Molecular Human Reproduction 25, Nr. 8 (19.07.2019): 495–505. http://dx.doi.org/10.1093/molehr/gaz039.
Der volle Inhalt der QuelleJansson, T., EA Cowley und NP Illsley. „Cellular localization of glucose transporter messenger RNA in human placenta“. Reproduction, Fertility and Development 7, Nr. 6 (1995): 1425. http://dx.doi.org/10.1071/rd9951425.
Der volle Inhalt der Quelle