Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Piston ring dynamics“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Piston ring dynamics" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Piston ring dynamics"
Knoll, G., H. Peeken, R. Lechtape-Gru¨ter und J. Lang. „Computer-Aided Simulation of Piston and Piston Ring Dynamics“. Journal of Engineering for Gas Turbines and Power 118, Nr. 4 (01.10.1996): 880–86. http://dx.doi.org/10.1115/1.2817009.
Der volle Inhalt der QuelleTian, T., L. B. Noordzij, V. W. Wong und J. B. Heywood. „Modeling Piston-Ring Dynamics, Blowby, and Ring-Twist Effects“. Journal of Engineering for Gas Turbines and Power 120, Nr. 4 (01.10.1998): 843–54. http://dx.doi.org/10.1115/1.2818477.
Der volle Inhalt der QuelleNovotný, Pavel, Peter Raffai, Jozef Dlugoš, Ondřej Maršálek und Jiří Knotek. „Role Of Computational Simulations In The Design Of Piston Rings“. Journal of Middle European Construction and Design of Cars 13, Nr. 1 (01.06.2015): 1–6. http://dx.doi.org/10.1515/mecdc-2015-0001.
Der volle Inhalt der QuelleAhmed Ali, Mohamed Kamal, Hou Xianjun, Richard Fiifi Turkson und Muhammad Ezzat. „An analytical study of tribological parameters between piston ring and cylinder liner in internal combustion engines“. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics 230, Nr. 4 (03.08.2016): 329–49. http://dx.doi.org/10.1177/1464419315605922.
Der volle Inhalt der QuelleMahmoud, Kamel G., Oliver Knaus, Tigran Parikyan, Guenter Offner und Stjepan Sklepic. „An integrated model for the performance of piston ring pack in internal combustion engines“. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics 232, Nr. 3 (25.10.2017): 371–84. http://dx.doi.org/10.1177/1464419317736676.
Der volle Inhalt der QuelleKhramtsov, I. V., P. V. Pisarev, V. V. Palchikovskiy, R. V. Bulbovich und V. V. Pavlogradskiy. „Numerical Analysis of Gasdynamic Characteristics of Vortex Ring“. Applied Mechanics and Materials 770 (Juni 2015): 483–88. http://dx.doi.org/10.4028/www.scientific.net/amm.770.483.
Der volle Inhalt der QuelleZhou, Xiao Rong, Meng Tian Song und Gan Wei Cai. „Research of Internal Combustion Engine Piston Skirt Profile Line Effect Based on Dynamics and Tribological Coupling Model“. Applied Mechanics and Materials 373-375 (August 2013): 3–6. http://dx.doi.org/10.4028/www.scientific.net/amm.373-375.3.
Der volle Inhalt der QuelleLi, Wanyou, Yibin Guo, Tao He, Xiqun Lu und Dequan Zou. „Interring Gas Dynamic Analysis of Piston in a Diesel Engine considering the Thermal Effect“. Mathematical Problems in Engineering 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/176893.
Der volle Inhalt der QuelleWannatong, Krisada, Somchai Chanchaona und Surachai Sanitjai. „Simulation algorithm for piston ring dynamics“. Simulation Modelling Practice and Theory 16, Nr. 1 (Januar 2008): 127–46. http://dx.doi.org/10.1016/j.simpat.2007.11.004.
Der volle Inhalt der QuelleNovotný, Pavel, Václav Píštěk und Lubomír Drápal. „Modeling of piston ring pack dynamics“. Journal of Middle European Construction and Design of Cars 9, Nr. 2 (01.11.2011): 8–13. http://dx.doi.org/10.2478/v10138-011-0008-y.
Der volle Inhalt der QuelleDissertationen zum Thema "Piston ring dynamics"
Akurati, Parthasri, und Karan Kumar. „Development of a 3D Ring Dynamics Model For a Heavy-Duty Piston Ring-Pack“. Thesis, Blekinge Tekniska Högskola, Institutionen för maskinteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-21638.
Der volle Inhalt der QuelleBaelden, Camille. „A multi-scale model for piston ring dynamics, lubrication and oil transport in internal combustion engines“. Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/92151.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (pages 215-218).
Fuel consumption reduction of more than 20% can be achieved through engine friction reduction. Piston and piston rings contribute approximately half of the total engine friction and are therefore central to friction reduction efforts. The most common method to reduce mechanical losses from piston rings has been to lower ring tension, the normal force providing sealing between the piston ring and the cylinder liner. However tension reduction can result in additional lubricant consumption. The objective of this thesis is to understand and model the physical mechanisms resulting in flow of oil to the combustion chamber in order to achieve optimal designs of piston rings. The optimal design is a compromise between friction reduction and adequate gas and lubricant sealing performance. To do so a multi-scale curved beam finite element model of piston ring is developed. It is built to couple ring deformation, dynamics and contact with the piston and the cylinder. Oil flow at the interfaces between the ring and the cylinder liner and between the ring and the piston groove can thus be simulated. The piston ring model is used to study the sealing performance of the Oil Control Ring (OCR), whose function is to limit the amount of oil supplied to the ring pack. The contributions of the three main mechanisms previously identified, to oil flow past the OCR are quantified: - Deformation of the cylinder under operating conditions can lead to a loss of contact between the ring and the liner. - Tilting of the piston around its pin can force the OCR to twist and scrape oil from the liner. - Oil accumulating below the OCR can flow to the groove and leak on the top of the OCR The OCR is found to be flexible enough to limit the impact of cylinder deformation on oil consumption. Both ring scraping and flow through the OCR groove can contribute to oil consumption in the range of engine running conditions simulated. Reduction of scraping is possible by increasing the ability of both OCR lands to maintain contact with the liner regardless of piston groove tilt. The flow of oil through the OCR groove can be reduced by designing appropriate draining of oil in the groove and an adequate oil reservoir below the OCR. The piston ring oil transport model developed in this thesis will be a valuable tool to optimize ring pack designs to achieve further ring pack friction reduction without increasing oil consumption.
by Camille Baelden.
Ph. D.
Dlugoš, Jozef. „Výpočtové modelování dynamiky pístního kroužku“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-231299.
Der volle Inhalt der QuelleHolík, Petr. „Úcpávky turbodmychadel“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2012. http://www.nusl.cz/ntk/nusl-230162.
Der volle Inhalt der QuelleBuchteile zum Thema "Piston ring dynamics"
Novotný, P., V. Píštìk und L. Drápal. „Dynamic Model of Piston Rings for Virtual Engine“. In Mechatronics, 547–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23244-2_66.
Der volle Inhalt der QuelleSherrington, I. „Measurement techniques for piston-ring tribology“. In Tribology and Dynamics of Engine and Powertrain, 387–425. Elsevier, 2010. http://dx.doi.org/10.1533/9781845699932.2.387.
Der volle Inhalt der QuelleMishra, P. C., H. Rahnejat und P. King. „Transient thermo-elastohydrodynamics of rough piston ring conjunction“. In Tribology and Dynamics of Engine and Powertrain, 518–41. Elsevier, 2010. http://dx.doi.org/10.1533/9781845699932.2.518.
Der volle Inhalt der QuelleD’Agostino, V., und A. Senatore. „Fundamentals of lubrication and friction of piston ring contact“. In Tribology and Dynamics of Engine and Powertrain, 343–86. Elsevier, 2010. http://dx.doi.org/10.1533/9781845699932.2.343.
Der volle Inhalt der QuelleRahmani, R., A. Shirvani und H. Shirvani. „Optimised textured surfaces with application in piston ring/cylinder liner contact“. In Tribology and Dynamics of Engine and Powertrain, 470–517. Elsevier, 2010. http://dx.doi.org/10.1533/9781845699932.2.470.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Piston ring dynamics"
Liu, Liang, und Tian Tian. „A Three-Dimensional Model for Piston Ring-Pack Dynamics and Blow-By Gas Flow“. In ASME 2004 Internal Combustion Engine Division Fall Technical Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/icef2004-0968.
Der volle Inhalt der QuelleMahmoud, K. G., O. Knaus, T. Parikyan und M. Patete. „Three Dimensional Ring Dynamics Modeling Approach for Analyzing Lubrication, Friction and Wear of Piston Ring-Pack“. In ASME 2017 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/icef2017-3586.
Der volle Inhalt der QuelleKurbet, S. N., und R. Krishna Kumar. „Finite Element Modeling of Piston-Ring Dynamics and Blowby Estimation in Single-Cylinder IC Engine“. In ASME 2002 Internal Combustion Engine Division Fall Technical Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/icef2002-531.
Der volle Inhalt der QuelleYang, Jianguo, Qiaoying Huang, Zhangming Peng und Yonghua Yu. „Simulation of Piston-Ring Dynamics of a Marine Diesel Engine“. In First International Conference on Transportation Information and Safety (ICTIS). Reston, VA: American Society of Civil Engineers, 2011. http://dx.doi.org/10.1061/41177(415)319.
Der volle Inhalt der QuelleHerbst, Hubert M., und Hans H. Priebsch. „Simulation of Piston Ring Dynamics and Their Effect on Oil Consumption“. In SAE 2000 World Congress. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2000. http://dx.doi.org/10.4271/2000-01-0919.
Der volle Inhalt der QuelleXiong, Daxi, Tian Tian und Victor Wong. „Transient Heat Transfer of Piston/Rings/Liner System in Diesel Engines“. In ASME 2005 Internal Combustion Engine Division Spring Technical Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/ices2005-1107.
Der volle Inhalt der QuelleTian, Tian, Remi Rabute, Victor W. Wong und John B. Heywood. „Effects of Piston-Ring Dynamics on Ring/Groove Wear and Oil Consumption in a Diesel Engine“. In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1997. http://dx.doi.org/10.4271/970835.
Der volle Inhalt der QuelleMaschewske, Max, Kimm Karrip und Carol Lynn Deck. „Advanced Tribological Assessment of Ring Coatings“. In ASME 2012 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/icef2012-92139.
Der volle Inhalt der QuelleStewart, Kelley C., und Pavlos P. Vlachos. „Vortex Ring Formation in Wall-Bounded Domains“. In ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-31055.
Der volle Inhalt der QuellePiao, Y., und S. D. Gulwadi. „Numerical Investigation of the Effects of Axial Cylinder Bore Profiles on Piston Ring Radial Dynamics“. In ASME 2002 Internal Combustion Engine Division Spring Technical Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/ices2002-477.
Der volle Inhalt der Quelle