Zeitschriftenartikel zum Thema „PiRNA clusters“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "PiRNA clusters" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Komarov, Pavel A., Olesya Sokolova, Natalia Akulenko, Emilie Brasset, Silke Jensen und Alla Kalmykova. „Epigenetic Requirements for Triggering Heterochromatinization and Piwi-Interacting RNA Production from Transgenes in the Drosophila Germline“. Cells 9, Nr. 4 (10.04.2020): 922. http://dx.doi.org/10.3390/cells9040922.
Der volle Inhalt der QuelleRadion, Elizaveta, Olesya Sokolova, Sergei Ryazansky, Pavel Komarov, Yuri Abramov und Alla Kalmykova. „The Integrity of piRNA Clusters is Abolished by Insulators in the Drosophila Germline“. Genes 10, Nr. 3 (11.03.2019): 209. http://dx.doi.org/10.3390/genes10030209.
Der volle Inhalt der QuelleChen, Peiwei, Yicheng Luo und Alexei A. Aravin. „RDC complex executes a dynamic piRNA program during Drosophila spermatogenesis to safeguard male fertility“. PLOS Genetics 17, Nr. 9 (02.09.2021): e1009591. http://dx.doi.org/10.1371/journal.pgen.1009591.
Der volle Inhalt der QuelleAssis, Raquel, und Alexey S. Kondrashov. „Rapid repetitive element-mediated expansion of piRNA clusters in mammalian evolution“. Proceedings of the National Academy of Sciences 106, Nr. 17 (08.04.2009): 7079–82. http://dx.doi.org/10.1073/pnas.0900523106.
Der volle Inhalt der QuelleStory, Benjamin, Xing Ma, Kazue Ishihara, Hua Li, Kathryn Hall, Allison Peak, Perera Anoja et al. „Defining the expression of piRNA and transposable elements in Drosophila ovarian germline stem cells and somatic support cells“. Life Science Alliance 2, Nr. 5 (Oktober 2019): e201800211. http://dx.doi.org/10.26508/lsa.201800211.
Der volle Inhalt der QuelleIyer, Shantanu S., Yidan Sun, Janine Seyfferth, Vinitha Manjunath, Maria Samata, Anastasios Alexiadis, Tanvi Kulkarni et al. „The NSL complex is required for piRNA production from telomeric clusters“. Life Science Alliance 6, Nr. 9 (30.06.2023): e202302194. http://dx.doi.org/10.26508/lsa.202302194.
Der volle Inhalt der QuelleWang, Sheng, Xiaohua Lu, Ding Qiu und Yang Yu. „To export, or not to export: how nuclear export factor variants resolve Piwi's dilemma“. Biochemical Society Transactions 49, Nr. 5 (13.10.2021): 2073–79. http://dx.doi.org/10.1042/bst20201171.
Der volle Inhalt der QuelleWang, Jiajia, Yirong Shi, Honghong Zhou, Peng Zhang, Tingrui Song, Zhiye Ying, Haopeng Yu et al. „piRBase: integrating piRNA annotation in all aspects“. Nucleic Acids Research 50, Nr. D1 (06.12.2021): D265—D272. http://dx.doi.org/10.1093/nar/gkab1012.
Der volle Inhalt der QuelleKofler, Robert. „piRNA Clusters Need a Minimum Size to Control Transposable Element Invasions“. Genome Biology and Evolution 12, Nr. 5 (27.03.2020): 736–49. http://dx.doi.org/10.1093/gbe/evaa064.
Der volle Inhalt der QuelleHuang, Xinya, Peng Cheng, Chenchun Weng, Zongxiu Xu, Chenming Zeng, Zheng Xu, Xiangyang Chen, Chengming Zhu, Shouhong Guang und Xuezhu Feng. „A chromodomain protein mediates heterochromatin-directed piRNA expression“. Proceedings of the National Academy of Sciences 118, Nr. 27 (29.06.2021): e2103723118. http://dx.doi.org/10.1073/pnas.2103723118.
Der volle Inhalt der QuelleJi, Qun, Zhengli Xie, Wu Gan, Lumin Wang und Wei Song. „Identification and Characterization of PIWI-Interacting RNAs in Spinyhead Croakers (Collichthys lucidus) by Small RNA Sequencing“. Fishes 7, Nr. 5 (20.10.2022): 297. http://dx.doi.org/10.3390/fishes7050297.
Der volle Inhalt der QuelleShoji, Keisuke, Yusuke Umemura, Susumu Katsuma und Yukihide Tomari. „The piRNA cluster torimochi is an expanding transposon in cultured silkworm cells“. PLOS Genetics 19, Nr. 2 (09.02.2023): e1010632. http://dx.doi.org/10.1371/journal.pgen.1010632.
Der volle Inhalt der QuelleGeles, Konstantinos, Domenico Palumbo, Assunta Sellitto, Giorgio Giurato, Eleonora Cianflone, Fabiola Marino, Daniele Torella et al. „WIND (Workflow for pIRNAs aNd beyonD): a strategy for in-depth analysis of small RNA-seq data“. F1000Research 10 (14.05.2021): 1. http://dx.doi.org/10.12688/f1000research.27868.2.
Der volle Inhalt der QuelleGeles, Konstantinos, Domenico Palumbo, Assunta Sellitto, Giorgio Giurato, Eleonora Cianflone, Fabiola Marino, Daniele Torella et al. „WIND (Workflow for pIRNAs aNd beyonD): a strategy for in-depth analysis of small RNA-seq data“. F1000Research 10 (12.07.2021): 1. http://dx.doi.org/10.12688/f1000research.27868.3.
Der volle Inhalt der QuelleGeles, Konstantinos, Domenico Palumbo, Assunta Sellitto, Giorgio Giurato, Eleonora Cianflone, Fabiola Marino, Daniele Torella et al. „WIND (Workflow for pIRNAs aNd beyonD): a strategy for in-depth analysis of small RNA-seq data“. F1000Research 10 (04.01.2021): 1. http://dx.doi.org/10.12688/f1000research.27868.1.
Der volle Inhalt der QuelleHuang, Ying, und Bowen Yu. „Structural studies of Rhino protein in piRNA biogenesis“. Acta Crystallographica Section A Foundations and Advances 70, a1 (05.08.2014): C1589. http://dx.doi.org/10.1107/s2053273314084101.
Der volle Inhalt der QuelleTsai, Shih-Ying, und Fu Huang. „Acetyltransferase Enok regulates transposon silencing and piRNA cluster transcription“. PLOS Genetics 17, Nr. 2 (01.02.2021): e1009349. http://dx.doi.org/10.1371/journal.pgen.1009349.
Der volle Inhalt der QuelleKamenova, Saltanat, Aksholpan Sharapkhanova, Aigul Akimniyazova, Karlygash Kuzhybayeva, Aida Kondybayeva, Aizhan Rakhmetullina, Anna Pyrkova und Anatoliy Ivashchenko. „piRNA and miRNA can Suppress the Expression of Multiple Sclerosis Candidate Genes“. Nanomaterials 13, Nr. 1 (21.12.2022): 22. http://dx.doi.org/10.3390/nano13010022.
Der volle Inhalt der QuelleFromm, Bastian, Juan Pablo Tosar, Felipe Aguilera, Marc R. Friedländer, Lutz Bachmann und Andreas Hejnol. „Evolutionary Implications of the microRNA- and piRNA Complement of Lepidodermella squamata (Gastrotricha)“. Non-Coding RNA 5, Nr. 1 (22.02.2019): 19. http://dx.doi.org/10.3390/ncrna5010019.
Der volle Inhalt der QuelleMilyaeva, P. A., A. R. Lavrenov, I. V. Kuzmin, A. I. Kim und L. N. Nefedova. „Regulation of Uni-Strand and Dual-Strand piRNA Clusters in Germ and Somatic Tissues in <i>Drosophila melanogaster</i> under Control of <i>rhino</i>“. Генетика 59, Nr. 12 (01.12.2023): 1372–81. http://dx.doi.org/10.31857/s0016675823120056.
Der volle Inhalt der QuelleAltshuller, Yelena, Qun Gao und Michael A. Frohman. „A C-Terminal Transmembrane Anchor Targets the Nuage-Localized Spermatogenic Protein Gasz to the Mitochondrial Surface“. ISRN Cell Biology 2013 (15.07.2013): 1–7. http://dx.doi.org/10.1155/2013/707930.
Der volle Inhalt der QuelleLe Thomas, Adrien, Evelyn Stuwe, Sisi Li, Jiamu Du, Georgi Marinov, Nikolay Rozhkov, Yung-Chia Ariel Chen et al. „Transgenerationally inherited piRNAs trigger piRNA biogenesis by changing the chromatin of piRNA clusters and inducing precursor processing“. Genes & Development 28, Nr. 15 (01.08.2014): 1667–80. http://dx.doi.org/10.1101/gad.245514.114.
Der volle Inhalt der QuelleLee, SePil, Satomi Kuramochi-Miyagawa, Ippei Nagamori und Toru Nakano. „Effects of transgene insertion loci and copy number on Dnmt3L gene silencing through antisense transgene-derived PIWI-interacting RNAs“. RNA 28, Nr. 5 (10.02.2022): 683–96. http://dx.doi.org/10.1261/rna.078905.121.
Der volle Inhalt der QuelleYamanaka, Soichiro, Mikiko C. Siomi und Haruhiko Siomi. „piRNA clusters and open chromatin structure“. Mobile DNA 5, Nr. 1 (2014): 22. http://dx.doi.org/10.1186/1759-8753-5-22.
Der volle Inhalt der QuelleYu, Bowen, und Ying Huang. „Rhino defines H3K9me3-marked piRNA clusters“. Oncotarget 6, Nr. 25 (13.08.2015): 20740–41. http://dx.doi.org/10.18632/oncotarget.5178.
Der volle Inhalt der QuelleKawaoka, Shinpei, Kahori Hara, Keisuke Shoji, Maki Kobayashi, Toru Shimada, Sumio Sugano, Yukihide Tomari, Yutaka Suzuki und Susumu Katsuma. „The comprehensive epigenome map of piRNA clusters“. Nucleic Acids Research 41, Nr. 3 (19.12.2012): 1581–90. http://dx.doi.org/10.1093/nar/gks1275.
Der volle Inhalt der QuelleRakhmetullina, Aizhan, Aigul Akimniyazova, Togzhan Niyazova, Anna Pyrkova, Makpal Tauassarova, Anatoliy Ivashchenko und Piotr Zielenkiewicz. „Interactions of piRNAs with the mRNA of Candidate Genes in Esophageal Squamous Cell Carcinoma“. Current Issues in Molecular Biology 45, Nr. 7 (23.07.2023): 6140–53. http://dx.doi.org/10.3390/cimb45070387.
Der volle Inhalt der QuelleFirsov, Sergei Yu, Karina A. Kosherova und Dmitry V. Mukha. „Identification and functional characterization of the German cockroach, Blattella germanica, short interspersed nuclear elements“. PLOS ONE 17, Nr. 6 (13.06.2022): e0266699. http://dx.doi.org/10.1371/journal.pone.0266699.
Der volle Inhalt der QuelleKofler, Robert. „Dynamics of Transposable Element Invasions with piRNA Clusters“. Molecular Biology and Evolution 36, Nr. 7 (09.04.2019): 1457–72. http://dx.doi.org/10.1093/molbev/msz079.
Der volle Inhalt der QuelleLipps, Northe, Figueiredo, Rohde, Brahmer, Krämer-Albers, Liebetrau et al. „Non-Invasive Approach for Evaluation of Pulmonary Hypertension Using Extracellular Vesicle-Associated Small Non-Coding RNA“. Biomolecules 9, Nr. 11 (29.10.2019): 666. http://dx.doi.org/10.3390/biom9110666.
Der volle Inhalt der QuelleAravin, A. A., R. Sachidanandam, A. Girard, K. Fejes-Toth und G. J. Hannon. „Developmentally Regulated piRNA Clusters Implicate MILI in Transposon Control“. Science 316, Nr. 5825 (04.05.2007): 744–47. http://dx.doi.org/10.1126/science.1142612.
Der volle Inhalt der QuelleZhang, Fan, Jie Wang, Jia Xu, Zhao Zhang, Birgit S. Koppetsch, Nadine Schultz, Thom Vreven et al. „UAP56 Couples piRNA Clusters to the Perinuclear Transposon Silencing Machinery“. Cell 151, Nr. 4 (November 2012): 871–84. http://dx.doi.org/10.1016/j.cell.2012.09.040.
Der volle Inhalt der QuelleLillestøl, Reidun, Peter Redder, Roger A. Garrett und Kim Brügger. „A putative viral defence mechanism in archaeal cells“. Archaea 2, Nr. 1 (2006): 59–72. http://dx.doi.org/10.1155/2006/542818.
Der volle Inhalt der QuelleBabenko, Vladimir, Anton Bogomolov, Roman Babenko, Elvira Galieva und Yuriy Orlov. „CpG islands’ clustering uncovers early development genes in the human genome“. Computer Science and Information Systems 15, Nr. 2 (2018): 473–85. http://dx.doi.org/10.2298/csis170523004b.
Der volle Inhalt der QuelleMohamed, Mourdas, Nguyet Thi-Minh Dang, Yuki Ogyama, Nelly Burlet, Bruno Mugat, Matthieu Boulesteix, Vincent Mérel et al. „A Transposon Story: From TE Content to TE Dynamic Invasion of Drosophila Genomes Using the Single-Molecule Sequencing Technology from Oxford Nanopore“. Cells 9, Nr. 8 (25.07.2020): 1776. http://dx.doi.org/10.3390/cells9081776.
Der volle Inhalt der QuelleZhou, Hao, Jiajia Liu, Wei Sun, Rui Ding, Xihe Li, Aishao Shangguan, Yang Zhou et al. „Differences in small noncoding RNAs profile between bull X and Y sperm“. PeerJ 8 (18.09.2020): e9822. http://dx.doi.org/10.7717/peerj.9822.
Der volle Inhalt der QuelleAsif-Laidin, Amna, Valérie Delmarre, Jeanne Laurentie, Wolfgang J. Miller, Stéphane Ronsseray und Laure Teysset. „Short and long-term evolutionary dynamics of subtelomeric piRNA clusters in Drosophila“. DNA Research 24, Nr. 5 (27.04.2017): 459–72. http://dx.doi.org/10.1093/dnares/dsx017.
Der volle Inhalt der QuelleAkulenko, Natalia, Sergei Ryazansky, Valeriya Morgunova, Pavel A. Komarov, Ivan Olovnikov, Chantal Vaury, Silke Jensen und Alla Kalmykova. „Transcriptional and chromatin changes accompanying de novo formation of transgenic piRNA clusters“. RNA 24, Nr. 4 (22.01.2018): 574–84. http://dx.doi.org/10.1261/rna.062851.117.
Der volle Inhalt der QuelleOlovnikov, I. A., und A. I. Kalmykova. „piRNA clusters as a main source of small RNAs in the animal germline“. Biochemistry (Moscow) 78, Nr. 6 (Juni 2013): 572–84. http://dx.doi.org/10.1134/s0006297913060035.
Der volle Inhalt der QuelleChang, Timothy H., Eugenio Mattei, Ildar Gainetdinov, Cansu Colpan, Zhiping Weng und Phillip D. Zamore. „Maelstrom Represses Canonical Polymerase II Transcription within Bi-directional piRNA Clusters in Drosophila melanogaster“. Molecular Cell 73, Nr. 2 (Januar 2019): 291–303. http://dx.doi.org/10.1016/j.molcel.2018.10.038.
Der volle Inhalt der QuelleKotnova, A. P., und Yu V. Ilyin. „Comparative Analysis of the Structure of Three piRNA Clusters in the Drosophila melanogaster Genome“. Molecular Biology 54, Nr. 3 (Mai 2020): 374–81. http://dx.doi.org/10.1134/s0026893320030085.
Der volle Inhalt der QuelleAkimniyazova, Aigul, Oxana Yurikova, Anna Pyrkova, Aizhan Rakhmetullina, Togzhan Niyazova, Alma-Gul Ryskulova und Anatoliy Ivashchenko. „In Silico Study of piRNA Interactions with the SARS-CoV-2 Genome“. International Journal of Molecular Sciences 23, Nr. 17 (31.08.2022): 9919. http://dx.doi.org/10.3390/ijms23179919.
Der volle Inhalt der QuelleMohn, Fabio, Grzegorz Sienski, Dominik Handler und Julius Brennecke. „The Rhino-Deadlock-Cutoff Complex Licenses Noncanonical Transcription of Dual-Strand piRNA Clusters in Drosophila“. Cell 157, Nr. 6 (Juni 2014): 1364–79. http://dx.doi.org/10.1016/j.cell.2014.04.031.
Der volle Inhalt der QuelleDevor, Eric J., Lingyan Huang und Paul B. Samollow. „piRNA-like RNAs in the marsupial Monodelphis domestica identify transcription clusters and likely marsupial transposon targets“. Mammalian Genome 19, Nr. 7-8 (13.05.2008): 581–86. http://dx.doi.org/10.1007/s00335-008-9109-x.
Der volle Inhalt der QuelleZanni, V., A. Eymery, M. Coiffet, M. Zytnicki, I. Luyten, H. Quesneville, C. Vaury und S. Jensen. „Distribution, evolution, and diversity of retrotransposons at the flamenco locus reflect the regulatory properties of piRNA clusters“. Proceedings of the National Academy of Sciences 110, Nr. 49 (18.11.2013): 19842–47. http://dx.doi.org/10.1073/pnas.1313677110.
Der volle Inhalt der QuelleKlattenhoff, Carla, Hualin Xi, Chengjian Li, Soohyun Lee, Jia Xu, Jaspreet S. Khurana, Fan Zhang et al. „The Drosophila HP1 Homolog Rhino Is Required for Transposon Silencing and piRNA Production by Dual-Strand Clusters“. Cell 138, Nr. 6 (September 2009): 1137–49. http://dx.doi.org/10.1016/j.cell.2009.07.014.
Der volle Inhalt der QuelleMilyaeva, Polina A., Inna V. Kukushkina, Alexander I. Kim und Lidia N. Nefedova. „Stress Induced Activation of LTR Retrotransposons in the Drosophila melanogaster Genome“. Life 13, Nr. 12 (28.11.2023): 2272. http://dx.doi.org/10.3390/life13122272.
Der volle Inhalt der QuelleAkkouche, Abdou, Bruno Mugat, Bridlin Barckmann, Carolina Varela-Chavez, Blaise Li, Raoul Raffel, Alain Pélisson und Séverine Chambeyron. „Piwi Is Required during Drosophila Embryogenesis to License Dual-Strand piRNA Clusters for Transposon Repression in Adult Ovaries“. Molecular Cell 66, Nr. 3 (Mai 2017): 411–19. http://dx.doi.org/10.1016/j.molcel.2017.03.017.
Der volle Inhalt der QuelleChoi, Heejin, Zhengpin Wang und Jurrien Dean. „Sperm acrosome overgrowth and infertility in mice lacking chromosome 18 pachytene piRNA“. PLOS Genetics 17, Nr. 4 (08.04.2021): e1009485. http://dx.doi.org/10.1371/journal.pgen.1009485.
Der volle Inhalt der QuelleFey, Rosalyn M., Eileen S. Chow, Barbara O. Gvakharia, Jadwiga M. Giebultowicz und David A. Hendrix. „Diurnal small RNA expression and post-transcriptional regulation in young and old Drosophila melanogaster heads“. F1000Research 11 (21.12.2022): 1543. http://dx.doi.org/10.12688/f1000research.124724.1.
Der volle Inhalt der Quelle