Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Piping design“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Piping design" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Piping design"
Zhang, Jing An, Zhuo Wei, Cheng Gang Li und Chang Bao Sun. „Piping System Design of Subsea Manifold“. Applied Mechanics and Materials 321-324 (Juni 2013): 1779–83. http://dx.doi.org/10.4028/www.scientific.net/amm.321-324.1779.
Der volle Inhalt der QuelleBROCK, J. E. „SOME FORMULAS FOR PIPING DESIGN“. Journal of the American Society for Naval Engineers 73, Nr. 2 (18.03.2009): 395–98. http://dx.doi.org/10.1111/j.1559-3584.1961.tb03314.x.
Der volle Inhalt der QuelleChoi, Ho-Sung, Jung-Hwan Moon und Jae-Ou Lee. „Fluid Behavior Modeling Optimal Design Using Network Piping Analysis Method“. Fire Science and Engineering 35, Nr. 1 (28.02.2021): 93–99. http://dx.doi.org/10.7731/kifse.6af732a2.
Der volle Inhalt der QuelleQu, Bo. „Design of Piping Functionality for Multi-Process Micro-Kernel Embedded OS on ARM“. Applied Mechanics and Materials 427-429 (September 2013): 937–40. http://dx.doi.org/10.4028/www.scientific.net/amm.427-429.937.
Der volle Inhalt der QuelleHarish Renukaradhya und Priyanka Amol Kodre. „Design aspects, consideration for modularization layout and piping design for optimization of modularization project“. World Journal of Advanced Engineering Technology and Sciences 2, Nr. 1 (30.01.2021): 011–16. http://dx.doi.org/10.30574/wjaets.2021.2.1.0036.
Der volle Inhalt der QuelleMilner, Christopher W., und Jack W. Davidson. „Quick piping“. ACM SIGPLAN Notices 37, Nr. 7 (17.07.2002): 175–84. http://dx.doi.org/10.1145/566225.513859.
Der volle Inhalt der QuelleChung, Chulsup. „A Study on Piping Support Design Process in Plant Piping System“. Journal of the Korean Institute of Gas 18, Nr. 6 (31.12.2014): 14–20. http://dx.doi.org/10.7842/kigas.2014.18.6.14.
Der volle Inhalt der QuelleInoue, Takehiko, Hirotaka Shirakami, Seiji Masuda, Takeshi Miida, Fusaichi Katayama, Younosuke Moriya, Yoshihiko Yamazaki und Toshiaki Matsuo. „HICADEC-A, P : Arrangement design, piping design system“. Journal of the Society of Naval Architects of Japan 1986, Nr. 160 (1986): 545–52. http://dx.doi.org/10.2534/jjasnaoe1968.1986.160_545.
Der volle Inhalt der QuelleQu, Bo. „Design of Piping Functionality for ARM Based Multi-Process Mono-Kernel Embedded OS“. Applied Mechanics and Materials 373-375 (August 2013): 1634–37. http://dx.doi.org/10.4028/www.scientific.net/amm.373-375.1634.
Der volle Inhalt der QuelleKoves, William J. „Process Piping Design: A Century of Progress“. Journal of Pressure Vessel Technology 122, Nr. 3 (03.04.2000): 325–28. http://dx.doi.org/10.1115/1.556199.
Der volle Inhalt der QuelleDissertationen zum Thema "Piping design"
Park, Jinhyung. „Pipe-routing algorithm development for a ship engine room design“. Thesis, online access from Digital Dissertation Consortium access full-text, 2002. http://libweb.cityu.edu.hk/cgi-bin/er/db/ddcdiss.pl?3062999.
Der volle Inhalt der QuelleChan, Lok Shun Apple. „Optimisation of piping network design for district cooling system“. Thesis, De Montfort University, 2008. http://hdl.handle.net/2086/4109.
Der volle Inhalt der QuelleLundskog, Måns. „Analysis of 3D design tools for tubing and piping design : Evaluating E3D and CATIA for on-machine tubing and piping design of paper machines using the analytic hierarchy process“. Thesis, Karlstads universitet, Institutionen för ingenjörsvetenskap och fysik (from 2013), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-72960.
Der volle Inhalt der QuelleMoffat, Douglas G. „Stress analysis and design of some pressure vessel and piping components“. Thesis, University of Strathclyde, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.248755.
Der volle Inhalt der QuelleGoodwin, Elliott Richard. „Experimental evaluation of the seismic performance of hospital piping subassemblies“. abstract and full text PDF (free order & download UNR users only), 2004. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1433293.
Der volle Inhalt der QuelleAvrithi, Kleio. „Reliability-based design of piping internal pressure, gravity, earthquake, and thermal expansion /“. College Park, Md. : University of Maryland, 2007. http://hdl.handle.net/1903/7380.
Der volle Inhalt der QuelleThesis research directed by: Civil Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
OJEDA, WALDO JIM GASTANAGA. „EVALUATION OF SOME DESIGN METHODS FOR MODAL SPECTRAL SEISMIC ANALYSIS OF PIPING SYSTEMS“. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1998. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=1414@1.
Der volle Inhalt der QuelleNUCLEN S.A.
Apresenta-se um estudo de avaliação dos critérios e métodos que são empregados atualmente na análise e projeto dos sistemas de tubulação nas usinas nucleares assim como a verificação da aplicação de alguns dos novos critérios apresentados pela comunidade técnico-científica internacional, dentro do método de análise modal-espectral. Estudam-se os tópicos da interação entre o sistema de tubulação e a estrutura que o suporta mediante o uso de espectros acoplados, a consideração do efeito do deslocamento relativo dos apoios da tubulação, usando-se espectros que o consideram ou uma excitação espectral múltipla, a introdução da combinação dos máximos modais dependendo da posição relativa das suas freqüências e a inclusão da resposta espectral correspondente aos modos de alta freqüência ou modos rígidos. A ferramenta básica de análise é constituída pelo programa computacional ANSYS. A avaliação é feita sobre parâmetros de esforços internos em trechos de um modelo de um sistema real de tubulações da usina nuclear brasileira, Angra 3. Os padrões são obtidos por análises no tempo de cada modelo sob o acelerograma de projeto. Conclusões são apresentadas sobre as atitudes mais convenientes para a atual conjuntura brasileira de projeto.
The main concern of this work is with the application of the modal spectral seismic analysis to secondary structural systems of nuclear power plants, with the large amount of conservatism which is included in them, and, of course, with the consequences to the particular case of the plants under construction in Brazil. One considers the design analysis methods which have been used so far in Brazil, as well as the most recent developments in the area, in USA and in Europe, to conclude about the adequacy of those procedures and recommend eventual changes to them. One then studies the subjects of the coupling effect between the primary and secondary system responses, the influence of the piping support relative displacements, the contribution of the cross-correlation among response modal components and the participation in the overall response of the so-called rigid modes. The main computer program aid is taken from an ANSYS-2 version and one uses a reduced model of a piping system as the secondary system and a 3-D beam element model of a reactor building as the primary system. The spectral analysis results are compared to time domain solutions using the same structural models excited by a design accelerogram. Conclusions and recommendations are oriented to the present design practice in Brazil.
En esta tesis se presenta un estudio de evaluación de los criterios y métodos que se emplean actualmente en el análisis y proyecto de los sistemas de tubulación en las plantas nucleares así como la verificación de la aplicación de algunos de los nuevos criterios presentados por la comunidad técnico-científica internacional, dentro del método de análisis modal-espectral. Se estudian los tópicos de la interacción entre el sistema de tubulación y la extructura que él soporta mediante el uso de espectros acoplados; la consideración del efecto de deslocamiento relativo de los apoyos de la tubulación, utilizando espectros que lo consideran o una excitación espectral múltipla; la introdución de la combinación de los máximos modales dependiendo de la posición relativa de las sus frecuencias y la inclusión de la respuesta espectral correspondiente a los modos de alta frecuencia o modos rígidos. La herramienta básica de análisis es el programa computacional ANSYS. La evaluación se realiza sobre parámetros de esfuerzos internos en trechos de un modelo de un sistema real de tuberías de la planta nuclear brasilera, Angra 3. Los padrones se obtienen por análisis en el tiempo de cada modelo bajo el acelerograma de proyecto. Se presentan conclusiones sobre las actitudes más convenientes para la actual conyuntura brasilera.
Urdahl, Ole Magnus. „Process design; Ensuring consistency between a piping and instrument diagram and the 3D model“. Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for produktutvikling og materialer, 2014. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-26322.
Der volle Inhalt der QuelleLozano, Martin Jr. „Design and control of a spheroidal underwater robot for the inspection of nuclear piping systems“. Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/74449.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (p. 59-60).
While it is critical that nuclear plants frequently inspect their facilities for cracking, corrosion or other failure modes, humans cannot safely perform these tasks due to the hazardous conditions within the tanks and piping systems. In response, the d'Arbeloff Laboratory in the Mechanical Engineering department is designing a compact submersible robot that is capable of precise navigation and maneuvering in order to detect defects within water filled piping systems. The robot is spheroidal with a smooth surface and no external appendages. It propels itself with centrifugal pumps which suck in water from the environment, and pump it out in various directions. This thesis covers the design and implementation of the software, electrical, and a few mechanical systems of the robot. Specifically, it details the programming techniques for the microcontroller and graphical user interface code, circuit board design, wiring, and waterproofing. A robot prototype was built, and experiments have given useful data to construct a model to supplement the field of underwater robotic design.
by Martin Lozano, Jr..
S.B.
Ošťádal, Michal. „Návrh čerpadla a potrubní trasy pro zajištění vyšší bezpečnosti jaderné elektrárny“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-443200.
Der volle Inhalt der QuelleBücher zum Thema "Piping design"
Kolster, E. Piping design manual. Calgary: E.K. Consulting and Design, 1989.
Den vollen Inhalt der Quelle findenRutger, Botermans, Hrsg. Process piping design handbook. Houston: Gulf Pub., 2007.
Den vollen Inhalt der Quelle findenSmith, Peter. Process piping design handbook. Houston: Gulf Pub., 2007.
Den vollen Inhalt der Quelle findenRase, Harold F. Piping design for process plants. Malabar, Fla: R.E. Krieger Pub. Co., 1990.
Den vollen Inhalt der Quelle findenBill Huitt, William M. Bioprocessing Piping and Equipment Design. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119284260.
Der volle Inhalt der Quelle1, American Society of Mechanical Engineers B31. Power piping. New York: The Society, 1992.
Den vollen Inhalt der Quelle findenAmerican Society of Mechanical Engineers. Power piping: ASME code for pressure piping, B31. 2. Aufl. New York: American Society of Mechanical Engineers, 2001.
Den vollen Inhalt der Quelle findenRoger, Hunt, Hrsg. Process plant layout and piping design. Englewood Cliffs, N.J: PTR Prentice Hall, 1993.
Den vollen Inhalt der Quelle findenReinhard, Hanselka, Hrsg. Handbook of thermoplastic piping system design. New York: M. Dekker, 1997.
Den vollen Inhalt der Quelle findenBausbacher, Ed. Process plant layout and piping design. Boston: Auerbach Publishers, 1990.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Piping design"
Koelet, P. C., und T. B. Gray. „Vessel and Piping Design“. In Industrial Refrigeration, 191–222. London: Macmillan Education UK, 1992. http://dx.doi.org/10.1007/978-1-349-11433-7_6.
Der volle Inhalt der QuelleGaddam, Subhash Reddy. „Thermal Stresses and Piping Flexibility“. In Design of Pressure Vessels, 113–31. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, LLC, 2021.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003091806-9.
Der volle Inhalt der QuelleBosserman, Bayard E., James C. Dowell, Elizabeth M. Huning, Robert L. Sanks, Thomas Flegal, Earl L. Heckman, Charles D. Morris und W. Stephen Shenk. „Piping“. In Pumping Station Design, 4.1–4.41. Elsevier, 2008. http://dx.doi.org/10.1016/b978-185617513-5.50011-1.
Der volle Inhalt der QuelleSutton, Ian. „Piping“. In Plant Design and Operations, 139–63. Elsevier, 2017. http://dx.doi.org/10.1016/b978-0-12-812883-1.00004-8.
Der volle Inhalt der QuelleCrawford, J. „Piping design“. In Offshore Installation Practice, 108–35. Elsevier, 1988. http://dx.doi.org/10.1016/b978-0-408-01483-0.50011-1.
Der volle Inhalt der Quelle„Piping Design“. In Power Boilers, 89–108. ASME Press, 2011. http://dx.doi.org/10.1115/1.859674.ch5.
Der volle Inhalt der QuelleStanford, Herbert W., und Adam F. Spach. „Piping Design“. In Analysis and Design of Heating, Ventilating, and Air-Conditioning Systems, 185–218. CRC Press, 2019. http://dx.doi.org/10.1201/9780429469473-8.
Der volle Inhalt der Quelle„Piping Design“. In Piping Design Handbook, 201–546. CRC Press, 1992. http://dx.doi.org/10.1201/9781482277081-10.
Der volle Inhalt der Quelle„Pressure Design“. In Power Piping, 23–44. ASME Press, 2013. http://dx.doi.org/10.1115/1.860144_ch4.
Der volle Inhalt der Quelle„Piping and Piping Components“. In Guidelines for Design Solutions for Process Equipment Failures, 161–75. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470935286.ch12.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Piping design"
Klumpp, P. T. „Expander Inlet Piping Design“. In ASME/JSME 2004 Pressure Vessels and Piping Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/pvp2004-2615.
Der volle Inhalt der QuelleIto, Teruaki, und Shuichi Fukuda. „Piping Route Path Planning Using Genetic Algorithm“. In ASME 1997 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/detc97/eim-3725.
Der volle Inhalt der QuelleHeiser, David M., und Kenneth L. Vogt, Jr. „Piping in Tight Quarters: Special Design Challenges for Waterworks Plant Yard Piping“. In Pipeline Division Specialty Conference 2006. Reston, VA: American Society of Civil Engineers, 2006. http://dx.doi.org/10.1061/40854(211)70.
Der volle Inhalt der QuelleMertiny, Pierre, und Horst Baier. „Optimization in Polymer Composite Piping Design“. In ASME 2013 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/pvp2013-97179.
Der volle Inhalt der QuelleMair, David. „Demonstrating Leak Tight Joints During Piping Design“. In ASME 2011 Pressure Vessels and Piping Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/pvp2011-57923.
Der volle Inhalt der QuelleMcGhee, James, Doug Newlands, Stuart Farquhar und Herbert L. Miller. „Control Valve Design Impact on Piping Vibration“. In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-60634.
Der volle Inhalt der QuelleMcIntosh, G. E. „Convection Design of Cryogenic Piping and Components“. In ADVANCES IN CRYOGENIC ENGINEERING: Transactions of the Cryogenic Engineering Conference - CEC. AIP, 2006. http://dx.doi.org/10.1063/1.2202513.
Der volle Inhalt der QuelleSuzuki, Kenichi, und Hiroshi Abe. „Seismic Proving Test of Ultimate Piping Strength: Safety Margin of Seismic Design Code for Piping“. In ASME 2005 Pressure Vessels and Piping Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/pvp2005-71005.
Der volle Inhalt der QuelleVallaster, W. B., H. G. Burchard und E. P. Sasscer. „Nonlinear Least Squares Applied to Liquid Piping Design“. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 1985. http://dx.doi.org/10.2118/14409-ms.
Der volle Inhalt der QuelleYoshida, Shinji. „Piping Design for Production Facilities Using 3D-CAD“. In CAD'15. CAD Solutions LLC, 2015. http://dx.doi.org/10.14733/cadconfp.2015.354-356.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Piping design"
Prather, M. C. 225-B ion exchange piping design documentation. Office of Scientific and Technical Information (OSTI), Februar 1996. http://dx.doi.org/10.2172/483360.
Der volle Inhalt der QuelleStevenson, J. D. Application of bounding spectra to seismic design of piping based on the performance of above ground piping in power plants subjected to strong motion earthquakes. Office of Scientific and Technical Information (OSTI), Februar 1995. http://dx.doi.org/10.2172/28193.
Der volle Inhalt der QuelleL. C. Cadwallader. Vacuum Bellows, Vacuum Piping, Cryogenic Break, and Copper Joint Failure Rate Estimates for ITER Design Use. Office of Scientific and Technical Information (OSTI), Juni 2010. http://dx.doi.org/10.2172/983360.
Der volle Inhalt der QuelleMCGREW, D. L. Project Design Concept for Transfer Piping For Project W-314 Tank Farm Restoration and Safe Operations. Office of Scientific and Technical Information (OSTI), September 1999. http://dx.doi.org/10.2172/798707.
Der volle Inhalt der QuelleMawhinney, J. R., P. J. DiNenno und F. W. Williams. New Concepts for Design of an Automated Hydraulic Piping Network for a Water Mist Fire Suppression System on Navy Ships. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada390576.
Der volle Inhalt der QuelleMartin, Kathi, Nick Jushchyshyn und Daniel Caulfield-Sriklad. 3D Interactive Panorama Jessie Franklin Turner Evening Gown c. 1932. Drexel Digital Museum, 2015. http://dx.doi.org/10.17918/9zd6-2x15.
Der volle Inhalt der QuelleTrabia, M. B., M. Kiley, J. Cardle und M. Joseph. Report on task assignment No. 3 for the Waste Package Project; Parts A & B, ASME pressure vessel codes review for waste package application; Part C, Library search for reliability/failure rates data on low temperature low pressure piping, containers, and casks with long design lives. Office of Scientific and Technical Information (OSTI), Juli 1991. http://dx.doi.org/10.2172/138422.
Der volle Inhalt der QuelleCrawford, Susan L., Anthony D. Cinson, Traci L. Moran, Michael T. Anderson und Aaron A. Diaz. Improvements in 500-kHz Ultrasonic Phased-Array Probe Designs for Evaluation of Thick Section Cast Austenitic Stainless Steel Piping Welds. Office of Scientific and Technical Information (OSTI), Februar 2011. http://dx.doi.org/10.2172/1012296.
Der volle Inhalt der QuelleReport of the US Nuclear Regulatory Commission Piping Review Committee. Volume 2. Evaluation of seismic designs: a review of seismic design requirements for Nuclear Power Plant Piping. Office of Scientific and Technical Information (OSTI), April 1985. http://dx.doi.org/10.2172/5730192.
Der volle Inhalt der QuelleDesign demonstrations for Category B tank systems piping at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Office of Scientific and Technical Information (OSTI), Dezember 1994. http://dx.doi.org/10.2172/39104.
Der volle Inhalt der Quelle