Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Pipeline out-of-order“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Pipeline out-of-order" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Pipeline out-of-order"
Varshitsky, Victor M., Igor B. Lebedenko und Eldar N. Figarov. „Method for determining process parameters in the repairing of pipelines with out-of-spec curvature“. SCIENCE & TECHNOLOGIES OIL AND OIL PRODUCTS PIPELINE TRANSPORTATION 10, Nr. 1 (29.02.2020): 17–21. http://dx.doi.org/10.28999/2541-9595-2020-10-1-17-21.
Der volle Inhalt der QuelleChen, Yu, und Yun Bing He. „Present Situation Analysis of Cathodic Protection of Natural Gas Pipelines in East Sichuan and Countermeasure Suggestions“. Applied Mechanics and Materials 256-259 (Dezember 2012): 2627–31. http://dx.doi.org/10.4028/www.scientific.net/amm.256-259.2627.
Der volle Inhalt der QuelleSchipachev, Andrey, Vadim Fetisov, Ayrat Nazyrov, Lee Donghee und Abdurakhmat Khamrakulov. „Study of the Pipeline in Emergency Operation and Assessing the Magnitude of the Gas Leak“. Energies 15, Nr. 14 (21.07.2022): 5294. http://dx.doi.org/10.3390/en15145294.
Der volle Inhalt der QuelleSekacheva, Antonina, Lilia Pastukhova und Alexandr Noskov. „EXPERIMENTAL STUDY OF DYNAMIC PARAMETERS OF COMPLEX PIPELINE SYSTEM“. Akustika, VOLUME 41 (2021): 65–72. http://dx.doi.org/10.36336/akustika20214165.
Der volle Inhalt der QuelleZhang, Peng, Xiangsu Chen und Chaohai Fan. „Research on a Safety Assessment Method for Leakage in a Heavy Oil Gathering Pipeline“. Energies 13, Nr. 6 (13.03.2020): 1340. http://dx.doi.org/10.3390/en13061340.
Der volle Inhalt der QuelleGalikeev, R. M., R. R. Taychinov und S. I. Grachev. „INVESTIGATION OF PROTECTIVE PROPERTIES OF SLEEVES FROM INTERNAL CORROSION OF WELDING SEWINGS OF INFIELD PIPELINES“. Oil and Gas Studies, Nr. 1 (01.03.2018): 53–56. http://dx.doi.org/10.31660/0445-0108-2018-1-53-56.
Der volle Inhalt der QuelleYe, Ji Hua, Qi Xie und Yao Hong Xiahou. „Simulation and Implementation of HLA-Based Branch Predictor of Multi-Pipeline Processor“. Applied Mechanics and Materials 204-208 (Oktober 2012): 4952–57. http://dx.doi.org/10.4028/www.scientific.net/amm.204-208.4952.
Der volle Inhalt der QuelleLiu, Qing. „Study on the Oil Pipeline Design of R Oil Field“. Frontiers Research of Architecture and Engineering 3, Nr. 3 (14.12.2020): 40. http://dx.doi.org/10.30564/frae.v3i3.2453.
Der volle Inhalt der QuelleShammazov, I. A., D. I. Sidorkin und E. R. Dzhemilev. „Research of the Dependence of the Pipeline Ends Displacement Value When Cutting Out Its Defective Section on the Elastic Stresses in the Pipe Body“. IOP Conference Series: Earth and Environmental Science 988, Nr. 2 (01.02.2022): 022077. http://dx.doi.org/10.1088/1755-1315/988/2/022077.
Der volle Inhalt der QuelleNwabueze, Gift, Joel Ogbonna und Chijioke Nwaozuzu. „COST – BENEFIT ANALYSIS FOR NIGERIAN NATURAL GAS PIPELINE INVESTMENT“. International Journal of Engineering Technologies and Management Research 7, Nr. 9 (25.09.2020): 52–65. http://dx.doi.org/10.29121/ijetmr.v7.i9.2020.780.
Der volle Inhalt der QuelleDissertationen zum Thema "Pipeline out-of-order"
Binder, Benjamin. „Definitions and Detection Procedures of Timing Anomalies for the Formal Verification of Predictability in Real-Time Systems“. Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPASG086.
Der volle Inhalt der QuelleThe timing behavior of real-time systems is often validated through timing analyses, which are yet jeopardized by execution phenomena called timing anomalies (TAs). A counter-intuitive TA manifests when a local speedup eventually leads to a global slowdown, and an amplification TA, when a local slowdown leads to an even larger global slowdown.While counter-intuitive TAs threaten the soundness/scalability of timing analyses, tools to systematically detect them do not exist. We set up a unified formal framework for systematically assessing the definitions of TAs, concluding the lack of a practical definition, mainly due to the absence of relations between local and global timing effects. We address these relations through the causality, which we further use to revise the formalization of these TAs. We also propose a specialized instance of the notions for out-of-order pipelines. We evaluate our subsequent detection procedure on illustrative examples and standard benchmarks, showing that it allows accurately capturing TAs.The complexity of the systems demands that their timing analyses be able to cope with the large resulting state space. A solution is to perform compositional analyses, specifically threatened by amplification TAs. We advance their study by showing how a specialized abstraction can be adapted for an industrial processor, by modeling the timing-relevant features of such a hardware with appropriate reductions. We also illustrate from this class of TAs how verification strategies can be used towards the obtainment of TA patterns
Endo, Fernando Akira. „Génération dynamique de code pour l'optimisation énergétique“. Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAM044/document.
Der volle Inhalt der QuelleIn computing systems, energy consumption is limiting the performance growth experienced in the last decades. Consequently, computer architecture and software development paradigms will have to change if we want to avoid a performance stagnation in the next decades.In this new scenario, new architectural and micro-architectural designs can offer the possibility to increase the energy efficiency of hardware, thanks to hardware specialization, such as heterogeneous configurations of cores, new computing units and accelerators. On the other hand, with this new trend, software development should cope with the lack of performance portability to ever changing hardware and with the increasing gap between the performance that programmers can extract and the maximum achievable performance of the hardware. To address this issue, this thesis contributes by proposing a methodology and proof of concept of a run-time auto-tuning framework for embedded systems. The proposed framework can both adapt code to a micro-architecture unknown prior compilation and explore auto-tuning possibilities that are input-dependent.In order to study the capability of the proposed approach to adapt code to different micro-architectural configurations, I developed a simulation framework of heterogeneous in-order and out-of-order ARM cores. Validation experiments demonstrated average absolute timing errors around 7 % when compared to real ARM Cortex-A8 and A9, and relative energy/performance estimations within 6 % for the Dhrystone 2.1 benchmark when compared to Cortex-A7 and A15 (big.LITTLE) CPUs.An important component of the run-time auto-tuning framework is a run-time code generation tool, called deGoal. It defines a low-level dynamic DSL for computing kernels. During this thesis, I ported deGoal to the ARM Thumb-2 ISA and added new features for run-time auto-tuning. A preliminary validation in ARM processors showed that deGoal can in average generate equivalent or higher quality machine code compared to programs written in C, including manually vectorized codes.The methodology and proof of concept of run-time auto-tuning in embedded processors were developed around two kernel-based applications, extracted from the PARSEC 3.0 suite and its hand vectorized version PARVEC. In the favorable application, average speedups of 1.26 and 1.38 were obtained in real and simulated cores, respectively, going up to 1.79 and 2.53 (all run-time overheads included). I also demonstrated through simulations that run-time auto-tuning of SIMD instructions to in-order cores can outperform the reference vectorized code run in similar out-of-order cores, with an average speedup of 1.03 and energy efficiency improvement of 39 %. The unfavorable application was chosen to show that the proposed approach has negligible overheads when better kernel versions can not be found. When both applications run in real hardware, the run-time auto-tuning performance is in average only 6 % way from the performance obtained by the best statically found kernel implementations
Sharma, Prabal. „A Branch Predictor Directed Data Cache Prefetcher for Out-of-order and Multicore Processors“. Thesis, 2013. http://hdl.handle.net/1969.1/151289.
Der volle Inhalt der QuelleBücher zum Thema "Pipeline out-of-order"
Guidelines of the staff safety and environmental protection while constructing, putting [sic] operating and repairing of submarine pipelines and submarine cable electrical and communication lines related to oil operations: Statements on the order of carrying out scientific research on sea associated with oil operations on the sea and interior reservoirs of the Republic of Kazakstan : on the order and conditions of provision of permissions on construction and operation of artificial islands, dams, facilities and device(s) while carrying out oil operations in the Republic of Kazakstanon [sic] : the order of organisation and conditions of compulsory insurance of oil operations. [Kazakhstan?: s.n.], 1997.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Pipeline out-of-order"
Jacobi, Christian. „Formal Verification of Complex Out-of-Order Pipelines by Combining Model-Checking and Theorem-Proving“. In Computer Aided Verification, 309–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45657-0_23.
Der volle Inhalt der QuelleWei, Chang Jia, Ong Zhen Liang und Ehsan Nikbakht Jarghouyeh. „Experimental Investigation of Effectiveness of FRP Composite Repair System on Offshore Pipelines Subjected to Pitting Corrosion Under Axial Compressive Load“. In Lecture Notes in Civil Engineering, 209–18. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1748-8_17.
Der volle Inhalt der QuelleGaragnani, Simone. „Semantic Representation of Accurate Surveys for the Cultural Heritage“. In Advances in Geospatial Technologies, 292–310. IGI Global, 2015. http://dx.doi.org/10.4018/978-1-4666-8379-2.ch009.
Der volle Inhalt der QuelleGaragnani, Simone. „Semantic Representation of Accurate Surveys for the Cultural Heritage“. In Civil and Environmental Engineering, 931–49. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-9619-8.ch040.
Der volle Inhalt der QuelleErçakıca, Mustafa. „Current Maritime Delimitation Activities in the Eastern Mediterranean Sea: An Evaluation from International Maritime Law Perspective“. In Politics, Economy, Security Issues Hidden Under the Carpet of Mediterranean, 30–44. European Publisher, 2022. http://dx.doi.org/10.15405/bi.20221101.2.
Der volle Inhalt der QuelleHobbie, John E., und Neil Bettez. „Climate Forcing at the Arctic LTER Site“. In Climate Variability and Ecosystem Response in Long-Term Ecological Research Sites. Oxford University Press, 2003. http://dx.doi.org/10.1093/oso/9780195150599.003.0011.
Der volle Inhalt der QuelleKaya, İbrahim. „A Brief Summary of EEG Artifact Handling“. In Artificial Intelligence. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.99127.
Der volle Inhalt der QuellePasqualetti, Martin J. „Cities“. In The Thread of Energy, 246–69. Oxford University Press, 2022. http://dx.doi.org/10.1093/oso/9780199394807.003.0009.
Der volle Inhalt der QuellePetryshyn, Igor, und Olexandr Bas. „NATURAL GAS HEAT COMBUSTION DETERMINATION ON MEASURING SYSTEMS WITH DUPLICATE GAS UNITS“. In Integration of traditional and innovative scientific researches: global trends and regional aspect. Publishing House “Baltija Publishing”, 2020. http://dx.doi.org/10.30525/978-9934-26-001-8-2-8.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Pipeline out-of-order"
Etsion, Yoav, Felipe Cabarcas, Alejandro Rico, Alex Ramirez, Rosa M. Badia, Eduard Ayguade, Jesus Labarta und Mateo Valero. „Task Superscalar: An Out-of-Order Task Pipeline“. In 2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 2010. http://dx.doi.org/10.1109/micro.2010.13.
Der volle Inhalt der QuelleVandierendonck, Hans, Philippe Manet, Thibault Delavallee, Igor Loiselle und Jean-Didier Legat. „By-passing the out-of-order execution pipeline to increase energy-efficiency“. In the 4th international conference. New York, New York, USA: ACM Press, 2007. http://dx.doi.org/10.1145/1242531.1242548.
Der volle Inhalt der QuelleZhang, Zhenyong, und Tong Lei. „One Design Method of Pipeline in Mined-Out Area“. In 2012 9th International Pipeline Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ipc2012-90269.
Der volle Inhalt der QuelleKnoop, Franz Martin, Johannes Groß-Weege und Ulrich Marewski. „Collapse Performance of HTS (Helical Seam Two Step) Welded Line Pipe“. In 2006 International Pipeline Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/ipc2006-10119.
Der volle Inhalt der QuellePapavinasam, S., A. Doiron, T. Panneerselvam, Y. Lafrenie`re, M. Attard, C. Derushie, R. Bouchard, B. Eagleson, R. W. Revie und A. Demoz. „Methodologies for Evaluating and Qualifying External Pipeline Coatings for Northern Pipelines“. In 2006 International Pipeline Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/ipc2006-10347.
Der volle Inhalt der QuelleTimashev, Sviatoslav A., und Alexander B. Kuzmin. „A Powerful Tool for Assessing Locations of Defects Missed-Out by ILI“. In 2004 International Pipeline Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ipc2004-0296.
Der volle Inhalt der QuelleBueno, A. H. S., B. B. Castro und J. A. C. Ponciano. „Laboratory Evaluation of Soil Stress Corrosion Cracking and Hydrogen Embrittlement of API Grade Steels“. In 2004 International Pipeline Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ipc2004-0284.
Der volle Inhalt der QuelleActon, Michael R., Neil W. Jackson und Eric E. R. Jager. „Development of Guidelines for Parallel Pipelines“. In 2010 8th International Pipeline Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ipc2010-31287.
Der volle Inhalt der QuelleHovey, Diane J., Tuerte A. Rolim und Abelindo A. de Oliveira. „Pressure Based Leak Detection for Pipelines, Implemented at Business Unit of Production and Exploration of Petrobras in Rio Grande do Norte and Ceara´“. In 2004 International Pipeline Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ipc2004-0591.
Der volle Inhalt der Quelledos Santos Amaral, Claudio, Alvaro Maia da Costa, Carlos de Oliveira Cardoso, Alejandro Andueza und Amaury Garcia. „Application of the ZIGZAG Concept to a Heated Pipeline in the Soft Soil of the Guanabara Bay“. In 2002 4th International Pipeline Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/ipc2002-27202.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Pipeline out-of-order"
Wang, Yong-Yi. PR-350-164501-WEB Guidance for Assessing Buried Pipelines after a Ground Movement Event. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Juni 2019. http://dx.doi.org/10.55274/r0011601.
Der volle Inhalt der QuelleZurcher, John, und Keith Leewis. PR-302-133606-R01 Improving the Performance of the ECDA Methodology. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Mai 2016. http://dx.doi.org/10.55274/r0010870.
Der volle Inhalt der QuelleBrydie, Dr James, Dr Alireza Jafari und Stephanie Trottier. PR-487-143727-R01 Modelling and Simulation of Subsurface Fluid Migration from Small Pipeline Leaks. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Mai 2017. http://dx.doi.org/10.55274/r0011025.
Der volle Inhalt der QuelleAlexander, Chris. PR652-184505-R01 Evaluating Installation Techniques for Pipeline Repair Methods. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Februar 2021. http://dx.doi.org/10.55274/r0012029.
Der volle Inhalt der QuelleLewan. PR-389-114503-R02 Leak Prevention in CO2 Pipeline Valves and Launches by Correct Seal Material Selection. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), März 2014. http://dx.doi.org/10.55274/r0010537.
Der volle Inhalt der QuelleTiku, Sanjay, Amin Eshraghi, Aaron Dinovitzer und Arnav Rana. PR-214-114500-R01 Fatigue Life Assessment of Dents with and without Interacting Features. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Dezember 2018. http://dx.doi.org/10.55274/r0011540.
Der volle Inhalt der QuelleFuglem. L52246 Damage Management for Operating Pipelines Gap Analysis. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), November 2007. http://dx.doi.org/10.55274/r0010351.
Der volle Inhalt der QuelleParkins. L51719 Overview of Intergranular SCC Research Activities. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), November 1994. http://dx.doi.org/10.55274/r0010136.
Der volle Inhalt der QuellePope und Pope. L51653 Fracture Behavior of Girth Welds Containing Natural Defects Comparison with Existing Standards. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Februar 1992. http://dx.doi.org/10.55274/r0010132.
Der volle Inhalt der QuelleWilcox. PR-015-09200-R01A Compressor and Pump Station Incidents and Technology Gaps. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Oktober 2009. http://dx.doi.org/10.55274/r0010956.
Der volle Inhalt der Quelle