Zeitschriftenartikel zum Thema „PINN“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "PINN" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Abdullah, Ibrahima Faye und Laila Amera Aziz. „Artificial Neural Networks Solutions for Solving Differential Equations: A Focus and Example for Flow of Viscoelastic Fluid with Microrotation“. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 112, Nr. 1 (13.01.2024): 76–83. http://dx.doi.org/10.37934/arfmts.112.1.7683.
Der volle Inhalt der QuelleZhang, Wenjuan, und Mohammed Al Kobaisi. „On the Monotonicity and Positivity of Physics-Informed Neural Networks for Highly Anisotropic Diffusion Equations“. Energies 15, Nr. 18 (18.09.2022): 6823. http://dx.doi.org/10.3390/en15186823.
Der volle Inhalt der QuelleAng, Elijah Hao Wei, Guangjian Wang und Bing Feng Ng. „Physics-Informed Neural Networks for Low Reynolds Number Flows over Cylinder“. Energies 16, Nr. 12 (07.06.2023): 4558. http://dx.doi.org/10.3390/en16124558.
Der volle Inhalt der QuelleEkramoddoullah, Abul K. M., Doug Taylor und Barbara J. Hawkins. „Characterisation of a fall protein of sugar pine and detection of its homologue associated with frost hardiness of western white pine needles“. Canadian Journal of Forest Research 25, Nr. 7 (01.07.1995): 1137–47. http://dx.doi.org/10.1139/x95-126.
Der volle Inhalt der QuelleLi, Jianfeng, Liangying Zhou, Jingwei Sun und Guangzhong Sun. „Physically plausible and conservative solutions to Navier-Stokes equations using Physics-Informed CNNs“. JUSTC 53 (2023): 1. http://dx.doi.org/10.52396/justc-2022-0174.
Der volle Inhalt der QuelleXiao, Zixu, Yaping Ju, Zhen Li, Jiawang Zhang und Chuhua Zhang. „On the Hard Boundary Constraint Method for Fluid Flow Prediction based on the Physics-Informed Neural Network“. Applied Sciences 14, Nr. 2 (19.01.2024): 859. http://dx.doi.org/10.3390/app14020859.
Der volle Inhalt der QuelleXia, Yichun, und Yonggang Meng. „Physics-Informed Neural Network (PINN) for Solving Frictional Contact Temperature and Inversely Evaluating Relevant Input Parameters“. Lubricants 12, Nr. 2 (17.02.2024): 62. http://dx.doi.org/10.3390/lubricants12020062.
Der volle Inhalt der QuelleChen, Yanlai, Yajie Ji, Akil Narayan und Zhenli Xu. „TGPT-PINN: Nonlinear model reduction with transformed GPT-PINNs“. Computer Methods in Applied Mechanics and Engineering 430 (Oktober 2024): 117198. http://dx.doi.org/10.1016/j.cma.2024.117198.
Der volle Inhalt der QuelleNgo, Son Ich, und Young-Il Lim. „Solution and Parameter Identification of a Fixed-Bed Reactor Model for Catalytic CO2 Methanation Using Physics-Informed Neural Networks“. Catalysts 11, Nr. 11 (28.10.2021): 1304. http://dx.doi.org/10.3390/catal11111304.
Der volle Inhalt der QuelleHou, Qingzhi, Honghan Du, Zewei Sun, Jianping Wang, Xiaojing Wang und Jianguo Wei. „PINN-CDR: A Neural Network-Based Simulation Tool for Convection-Diffusion-Reaction Systems“. International Journal of Intelligent Systems 2023 (16.08.2023): 1–15. http://dx.doi.org/10.1155/2023/2973249.
Der volle Inhalt der QuellePu, Jun, Wenfang Song, Junlai Wu, Feifei Gou, Xia Yin und Yunqian Long. „PINN-Based Method for Predicting Flow Field Distribution of the Tight Reservoir after Fracturing“. Geofluids 2022 (06.04.2022): 1–10. http://dx.doi.org/10.1155/2022/1781388.
Der volle Inhalt der QuelleVanden Berge, Dennis J., Nicholas A. Kusnezov, Sydney Rubin, Thomas Dagg, Justin Orr, Justin Mitchell, Miguel Pirela-Cruz und John C. Dunn. „Outcomes Following Isolated Posterior Interosseous Nerve Neurectomy: A Systematic Review“. HAND 12, Nr. 6 (01.02.2017): 535–40. http://dx.doi.org/10.1177/1558944717692093.
Der volle Inhalt der QuelleTa, Hoa, Shi Wen Wong, Nathan McClanahan, Jung-Han Kimn und Kaiqun Fu. „Exploration on Physics-Informed Neural Networks on Partial Differential Equations (Student Abstract)“. Proceedings of the AAAI Conference on Artificial Intelligence 37, Nr. 13 (26.06.2023): 16344–45. http://dx.doi.org/10.1609/aaai.v37i13.27032.
Der volle Inhalt der QuellePark, Hyun-Woo, und Jin-Ho Hwang. „Predicting the Early-Age Time-Dependent Behaviors of a Prestressed Concrete Beam by Using Physics-Informed Neural Network“. Sensors 23, Nr. 14 (24.07.2023): 6649. http://dx.doi.org/10.3390/s23146649.
Der volle Inhalt der QuellePratama, Muchamad Harry Yudha, und Agus Yodi Gunawan. „EXPLORING PHYSICS-INFORMED NEURAL NETWORKS FOR SOLVING BOUNDARY LAYER PROBLEMS“. Journal of Fundamental Mathematics and Applications (JFMA) 6, Nr. 2 (27.11.2023): 101–16. http://dx.doi.org/10.14710/jfma.v6i2.20084.
Der volle Inhalt der QuelleZhou, Meijun, und Gang Mei. „Transfer Learning-Based Coupling of Smoothed Finite Element Method and Physics-Informed Neural Network for Solving Elastoplastic Inverse Problems“. Mathematics 11, Nr. 11 (31.05.2023): 2529. http://dx.doi.org/10.3390/math11112529.
Der volle Inhalt der QuelleLiu, Youqiong, Li Cai, Yaping Chen und Bin Wang. „Physics-informed neural networks based on adaptive weighted loss functions for Hamilton-Jacobi equations“. Mathematical Biosciences and Engineering 19, Nr. 12 (2022): 12866–96. http://dx.doi.org/10.3934/mbe.2022601.
Der volle Inhalt der QuelleFu, Cifu, Jie Xiong und Fujiang Yu. „Storm surge forecasting based on physics-informed neural networks in the Bohai Sea“. Journal of Physics: Conference Series 2718, Nr. 1 (01.03.2024): 012057. http://dx.doi.org/10.1088/1742-6596/2718/1/012057.
Der volle Inhalt der QuelleGarcia Inda, Adan Jafet, Shao Ying Huang, Nevrez İmamoğlu, Ruian Qin, Tianyi Yang, Tiao Chen, Zilong Yuan und Wenwei Yu. „Physics Informed Neural Networks (PINN) for Low Snr Magnetic Resonance Electrical Properties Tomography (MREPT)“. Diagnostics 12, Nr. 11 (29.10.2022): 2627. http://dx.doi.org/10.3390/diagnostics12112627.
Der volle Inhalt der QuelleLee, Jonghwan. „Physics-Informed Neural Network for High Frequency Noise Performance in Quasi-Ballistic MOSFETs“. Electronics 10, Nr. 18 (10.09.2021): 2219. http://dx.doi.org/10.3390/electronics10182219.
Der volle Inhalt der QuelleLee, Sangmin, und John Popovics. „Applications of physics-informed neural networks for property characterization of complex materials“. RILEM Technical Letters 7 (30.01.2023): 178–88. http://dx.doi.org/10.21809/rilemtechlett.2022.174.
Der volle Inhalt der QuelleHuang, Hai, Pengcheng Guo, Jianguo Yan, Bo Zhang und Zhenkai Mao. „Impact of uncertainty in the physics-informed neural network on pressure prediction for water hammer in pressurized pipelines“. Journal of Physics: Conference Series 2707, Nr. 1 (01.02.2024): 012095. http://dx.doi.org/10.1088/1742-6596/2707/1/012095.
Der volle Inhalt der QuelleParis, Peter J. „Fortress Introduction to Black Church History. Ann H. Pinn , Anthony B. Pinn“. Journal of Religion 83, Nr. 3 (Juli 2003): 449–50. http://dx.doi.org/10.1086/491355.
Der volle Inhalt der QuelleZhou, Meijun, Gang Mei und Nengxiong Xu. „Enhancing Computational Accuracy in Surrogate Modeling for Elastic–Plastic Problems by Coupling S-FEM and Physics-Informed Deep Learning“. Mathematics 11, Nr. 9 (24.04.2023): 2016. http://dx.doi.org/10.3390/math11092016.
Der volle Inhalt der QuelleOldenburg, Jan, Wiebke Wollenberg, Finja Borowski, Klaus-Peter Schmitz, Michael Stiehm und Alper Öner. „Augmentation of experimentally obtained flow fields by means of Physics Informed Neural Networks (PINN) demonstrated on aneurysm flow“. Current Directions in Biomedical Engineering 9, Nr. 1 (01.09.2023): 519–23. http://dx.doi.org/10.1515/cdbme-2023-1130.
Der volle Inhalt der QuelleLiu, Zhixiang, Yuanji Chen, Ge Song, Wei Song und Jingxiang Xu. „Combination of Physics-Informed Neural Networks and Single-Relaxation-Time Lattice Boltzmann Method for Solving Inverse Problems in Fluid Mechanics“. Mathematics 11, Nr. 19 (01.10.2023): 4147. http://dx.doi.org/10.3390/math11194147.
Der volle Inhalt der QuelleSouleymane, Zio, Bernard Lamien, Mohamed Beidari und Tougri Inoussa. „Numerical simulation of pollutants transport in groundwater using deep neural networks informed by physics“. Gulf Journal of Mathematics 16, Nr. 2 (08.04.2024): 337–52. http://dx.doi.org/10.56947/gjom.v16i2.1863.
Der volle Inhalt der QuelleAlmqvist, Andreas. „Fundamentals of Physics-Informed Neural Networks Applied to Solve the Reynolds Boundary Value Problem“. Lubricants 9, Nr. 8 (19.08.2021): 82. http://dx.doi.org/10.3390/lubricants9080082.
Der volle Inhalt der QuelleHuang, Yi, Zhiyu Zhang und Xing Zhang. „A Direct-Forcing Immersed Boundary Method for Incompressible Flows Based on Physics-Informed Neural Network“. Fluids 7, Nr. 2 (25.01.2022): 56. http://dx.doi.org/10.3390/fluids7020056.
Der volle Inhalt der QuelleGao, Yunpeng, Li Qian, Tianzhi Yao, Zuguo Mo, Jianhai Zhang, Ru Zhang, Enlong Liu und Yonghong Li. „An Improved Physics-Informed Neural Network Algorithm for Predicting the Phreatic Line of Seepage“. Advances in Civil Engineering 2023 (15.04.2023): 1–11. http://dx.doi.org/10.1155/2023/5499645.
Der volle Inhalt der QuelleXiao, Chaohao, Xiaoqian Zhu, Fukang Yin und Xiaoqun Cao. „Physics-informed neural network for solving coupled Korteweg-de Vries equations“. Journal of Physics: Conference Series 2031, Nr. 1 (01.09.2021): 012056. http://dx.doi.org/10.1088/1742-6596/2031/1/012056.
Der volle Inhalt der QuellePark, Yongsung, Seunghyun Yoon, Peter Gerstoft und Woojae Seong. „Physics-informed neural network-based predictions of ocean acoustic pressure fields“. Journal of the Acoustical Society of America 155, Nr. 3_Supplement (01.03.2024): A44. http://dx.doi.org/10.1121/10.0026740.
Der volle Inhalt der QuellePsaros, Apostolos F., Kenji Kawaguchi und George Em Karniadakis. „Meta-learning PINN loss functions“. Journal of Computational Physics 458 (Juni 2022): 111121. http://dx.doi.org/10.1016/j.jcp.2022.111121.
Der volle Inhalt der QuelleConchubhair, Brian Ó., und Greagóir Ó. Dúill. „Fearann Pinn: Filíocht 1900-1999“. Comhar 60, Nr. 12 (2000): 25. http://dx.doi.org/10.2307/25574160.
Der volle Inhalt der QuelleZhang, Jianying. „Physics-Informed Neural Networks for Bingham Fluid Flow Simulation Coupled with an Augmented Lagrange Method“. AppliedMath 3, Nr. 3 (30.06.2023): 525–51. http://dx.doi.org/10.3390/appliedmath3030028.
Der volle Inhalt der QuelleZhai, Hanfeng, und Timothy Sands. „Comparison of Deep Learning and Deterministic Algorithms for Control Modeling“. Sensors 22, Nr. 17 (24.08.2022): 6362. http://dx.doi.org/10.3390/s22176362.
Der volle Inhalt der QuelleKim, Jungeun, Kookjin Lee, Dongeun Lee, Sheo Yon Jhin und Noseong Park. „DPM: A Novel Training Method for Physics-Informed Neural Networks in Extrapolation“. Proceedings of the AAAI Conference on Artificial Intelligence 35, Nr. 9 (18.05.2021): 8146–54. http://dx.doi.org/10.1609/aaai.v35i9.16992.
Der volle Inhalt der QuelleMa, Yaoyao, Xiaoyu Xu, Shuai Yan und Zhuoxiang Ren. „A Preliminary Study on the Resolution of Electro-Thermal Multi-Physics Coupling Problem Using Physics-Informed Neural Network (PINN)“. Algorithms 15, Nr. 2 (01.02.2022): 53. http://dx.doi.org/10.3390/a15020053.
Der volle Inhalt der QuelleXue, Chenyu, Bo Jiang, Jiangong Zhu, Xuezhe Wei und Haifeng Dai. „An Enhanced Single-Particle Model Using a Physics-Informed Neural Network Considering Electrolyte Dynamics for Lithium-Ion Batteries“. Batteries 9, Nr. 10 (15.10.2023): 511. http://dx.doi.org/10.3390/batteries9100511.
Der volle Inhalt der QuelleCloud, Nathan, Benjamin M. Goldsberry und Michael R. Haberman. „Accurate and computationally efficient basis function generation using physics informed neural networks“. Journal of the Acoustical Society of America 155, Nr. 3_Supplement (01.03.2024): A143. http://dx.doi.org/10.1121/10.0027098.
Der volle Inhalt der QuelleVoigt, Jorrit, und Michael Moeckel. „Modelling dynamic 3D heat transfer in laser material processing based on physics informed neural networks“. EPJ Web of Conferences 266 (2022): 02010. http://dx.doi.org/10.1051/epjconf/202226602010.
Der volle Inhalt der QuelleYokota, Kazuya, Takahiko Kurahashi und Masajiro Abe. „Physics-informed neural network for acoustic resonance analysis in a one-dimensional acoustic tube“. Journal of the Acoustical Society of America 156, Nr. 1 (01.07.2024): 30–43. http://dx.doi.org/10.1121/10.0026459.
Der volle Inhalt der QuelleCheng, Chen, und Guang-Tao Zhang. „Deep Learning Method Based on Physics Informed Neural Network with Resnet Block for Solving Fluid Flow Problems“. Water 13, Nr. 4 (05.02.2021): 423. http://dx.doi.org/10.3390/w13040423.
Der volle Inhalt der QuelleDu, Meiyuan, Chi Zhang, Sheng Xie, Fang Pu, Da Zhang und Deyu Li. „Investigation on aortic hemodynamics based on physics-informed neural network“. Mathematical Biosciences and Engineering 20, Nr. 7 (2023): 11545–67. http://dx.doi.org/10.3934/mbe.2023512.
Der volle Inhalt der QuelleHariri, I., A. Radid und K. Rhofir. „Physics-informed neural networks for the reaction-diffusion Brusselator model“. Mathematical Modeling and Computing 11, Nr. 2 (2024): 448–54. http://dx.doi.org/10.23939/mmc2024.02.448.
Der volle Inhalt der QuelleDeng, Yawen, Changchang Chen, Qingxin Wang, Xiaohe Li, Zide Fan und Yunzi Li. „Modeling a Typical Non-Uniform Deformation of Materials Using Physics-Informed Deep Learning: Applications to Forward and Inverse Problems“. Applied Sciences 13, Nr. 7 (03.04.2023): 4539. http://dx.doi.org/10.3390/app13074539.
Der volle Inhalt der QuelleTan, Chenkai, Yingfeng Cai, Hai Wang, Xiaoqiang Sun und Long Chen. „Vehicle State Estimation Combining Physics-Informed Neural Network and Unscented Kalman Filtering on Manifolds“. Sensors 23, Nr. 15 (25.07.2023): 6665. http://dx.doi.org/10.3390/s23156665.
Der volle Inhalt der QuelleZhang, Runlin, Nuo Xu, Kai Zhang, Lei Wang und Gui Lu. „A Parametric Physics-Informed Deep Learning Method for Probabilistic Design of Thermal Protection Systems“. Energies 16, Nr. 9 (29.04.2023): 3820. http://dx.doi.org/10.3390/en16093820.
Der volle Inhalt der QuelleZhong, Linlin, Bingyu Wu und Yifan Wang. „Accelerating Physics-Informed Neural Network based 1-D arc simulation by meta learning“. Journal of Physics D: Applied Physics, 25.01.2023. http://dx.doi.org/10.1088/1361-6463/acb604.
Der volle Inhalt der QuelleZhong, Linlin, Bingyu Wu und Yifan Wang. „Low-temperature plasma simulation based on physics-informed neural networks: frameworks and preliminary applications“. Physics of Fluids, 26.07.2022. http://dx.doi.org/10.1063/5.0106506.
Der volle Inhalt der Quelle